Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs) have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1—the summer 2015 and winter 2016 growing seasons–of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project’s goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both. As the first and most comprehensive project of its kind to date, these lessons are particularly salient to researchers embarking on agricultural research with UAVs.
Accurate measures of forest structural parameters are essential to forest inventory and growth models, managing wildfires, and modeling of carbon cycle. Terrestrial laser scanning (TLS) fills the gap between tree scale manual measurements and large scale airborne LiDAR measurements by providing accurate below crown information through non-destructive methods. This study developed innovative methods to extract individual tree height, diameter at breast height (DBH), and crown width of trees in East Texas. Further, the influence of scan settings, such as leaf-on/leaf-off seasons, tree distance from the scanner, and processing choices, on the accuracy of deriving tree measurements were also investigated. DBH was retrieved by cylinder fitting at different height bins. Individual trees were extracted from the TLS point cloud to determine tree heights and crown widths. The R-squared value ranged from 0.91 to 0.97 when field measured DBH was validated against TLS derived DBH using different methods. An accuracy of 92% (RMSE = 1.51 m) was obtained for predicting tree heights. The R-squared value was 0.84 and RMSE was 1.08 m when TLS derived crown widths were validated using field measured crown widths. Examples of underestimations of field measured forest structural parameters due to tree shadowing have also been discussed in this study. The results from this study will benefit foresters and remote sensing studies from airborne and spaceborne platforms, for map upscaling or calibration purposes, for aboveground biomass estimation, and prudent decision making by the forest management.
OPEN ACCESSRemote Sens. 2015, 7 1878
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.