A measurement of the ratio of the branching fractions of the B(+) → K(+)μ(+)μ(-) and B(+) → K(+)e(+)e(-) decays is presented using proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb(-1), recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. The value of the ratio of branching fractions for the dilepton invariant mass squared range 1 < q(2) < 6 GeV(2)/c(4) is measured to be 0.745(-0.074)(+0.090)(stat) ± 0.036(syst). This value is the most precise measurement of the ratio of branching fractions to date and is compatible with the standard model prediction within 2.6 standard deviations.
A test of lepton universality, performed by measuring the ratio of the branching fractions of the B 0 → K * 0 µ + µ − and B 0 → K * 0 e + e − decays, R K * 0 , is presented. The K * 0 meson is reconstructed in the final state K + π − , which is required to have an invariant mass within 100 MeV/c 2 of the known K * (892) 0 mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3 fb −1 , collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The ratio is measured in two regions of the dilepton invariant mass squared, q 2 , to be− 0.07 (stat) ± 0.03 (syst) for 0.045 < q 2 < 1.1 GeV 2 /c 4 , 0.69 + 0.11 − 0.07 (stat) ± 0.05 (syst) for 1.1 < q 2 < 6.0 GeV 2 /c 4 .The corresponding 95.4% confidence level intervals are [0.52, 0.89] and [0.53, 0.94]. The results, which represent the most precise measurements of R K * 0 to date, are compatible with the Standard Model expectations at the level of 2.1-2.3 and 2.4-2.5 standard deviations in the two q 2 regions, respectively.
A measurement of the ratio of branching fractions of the decays B þ → K þ μ þ μ − and B þ → K þ e þ e − is presented. The proton-proton collision data used correspond to an integrated luminosity of 5.0 fb −1 recorded with the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. For the dilepton mass-squared range 1.1 < q 2 < 6.0 GeV 2 =c 4 the ratio of branching fractions is measured to be R K ¼ 0.846 þ0.060 −0.054 þ0.016 −0.014 , where the first uncertainty is statistical and the second systematic. This is the most precise measurement of R K to date and is compatible with the standard model at the level of 2.5 standard deviations.
The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.