Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point. We report on the demonstration of self-amplified spontaneous emission gain, exponential growth, and saturation at visible (530 nanometers) and ultraviolet (385 nanometers) wavelengths. Good agreement between theory and simulation indicates that scaling to much shorter wavelengths may be possible. These results confirm the physics behind the self-amplified spontaneous emission process and forward the development of an operational x-ray free-electron laser.
The triggering of wave-breaking in a three-dimensional laser plasma wake (bubble) is investigated. The Coulomb potential from a nanowire is used to disturb the wake field to initialize the wave-breaking. The electron acceleration becomes more stable and the laser power needed for self-trapping is lowered. Three-dimensional particle-in-cell simulations were performed. Electrons with a charge of about 100pC can be accelerated stably to energy about 170MeV with a laser energy of 460mJ. The first step towards tailoring the electron beam properties such as the energy, energy spread, and charge is discussed.
The Linac Coherent Light Source (LCLS) is a fourthgeneration light source demonstration project based on the self-amplified spontaneous emission (SASE) free-electron laser (FEL) concept. It will combine a new photoinjector, the Stanford Linear Accelerator Center (SLAC) linac, with two stages of bunch compression and a long undulator to create intense radiation pulses at 1.5 A. Successful operation of the LCLS will require consistent delivery of a highbrightness electron beam to the undulator, in the face of effects such as wakefields and coherent synchrotron radiation (CSR). Because of the sensitivity to beam quality and subtle effects, it is necessary to perform integrated tracking from the cathode through the undulator. We report on the combined use of PARMELA, elegant, and GENESIS to perform these simulations, and in particular the simulation of pulse-to-pulse variation in FEL performance due to rfand laser-related variation in the electron beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.