Neutron-rich isotopes around lead, beyond N=126, have been studied exploiting the fragmentation of an uranium primary beam at the FRS-RISING setup at GSI. For the first time β-decay half-lives of 219 Bi and 211,212,213 Tl isotopes have been derived. The half-lives have been extracted using a numerical simulation developed for experiments in high-background conditions. Comparison with state of the art models used in r-process calculations is given, showing a systematic underestimation of the experimental values, at variance from close-lying nuclei.
The neutron-rich lead isotopes, up to 216 Pb, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond 208 Pb. The shell model is nowadays able to provide a comprehensive view of the atomic nucleus [1]. It is a many-body theoretical framework, successful in explaining various features of the structure of nuclei, based on the definition of a restricted valence space where a suitable Hamiltonian can be diagonalized. This effective interaction originates from realistic two-body nuclear forces based on phenomenological nucleon-nucleon potentials, renormalized to be adapted to the truncated model space. Although the renormalization process can be treated in a rigorous mathematical way, the appearance of effective terms is often neglected in calculations, as a common but incorrect practice. The presence and relevance of these effective forces is well known also in other fields of physics, as for example in condensed matter studies [2]. Indeed, effective three-body terms appear already at the lower perturbation order [3]: PRL 109, 162502 (2012) P H Y S I C A L
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.