Our objective was to establish the pattern of spread in lower limb-onset ALS (contra-versus ipsilateral) and its contribution to prognosis within a multivariate model. Pattern of spread was established in 109 sporadic ALS patients with lower limb-onset, prospectively recorded in Oxford and Sheffield tertiary clinics from 2001 to 2008. Survival analysis was by univariate KaplanMeier log-rank and multivariate Cox proportional hazards. Variables studied were time to next limb progression, site of next progression, age at symptom onset, gender, diagnostic latency and use of riluzole. Initial progression was either to the contralateral leg (76%) or ipsilateral arm (24%). Factors independently affecting survival were time to next limb progression, age at symptom onset, and diagnostic latency. Time to progression as a prognostic factor was independent of initial direction of spread. In a regression analysis of the deceased, overall survival from symptom onset approximated to two years plus the time interval for initial spread. In conclusion, rate of progression in lower limb-onset ALS is not influenced by whether initial spread is to the contralateral limb or ipsilateral arm. The time interval to this initial spread is a powerful factor in predicting overall survival, and could be used to facilitate decision-making and effective care planning.
Background Objective symptom monitoring of patients with Amyotrophic Lateral Sclerosis (ALS) has the potential to provide an important source of information to evaluate the impact of the disease on aspects of real-world functional capacity and activities of daily living in the home setting, providing useful objective outcome measures for clinical trials. Objective This study aimed to investigate the feasibility of a novel digital platform for remote data collection of multiple symptoms—physical activity, heart rate variability (HRV), and digital speech characteristics—in 25 patients with ALS in an observational clinical trial setting to explore the impact of the devices on patients’ everyday life and to record tolerability related to the devices and study procedures over 48 weeks. Methods In this exploratory, noncontrolled, nondrug study, patients attended a clinical site visit every 3 months to perform activity reference tasks while wearing a sensor, to conduct digital speech tests and for conventional ALS monitoring. In addition, patients wore the sensor in their daily life for approximately 3 days every month for the duration of the study. Results The amount and quality of digital speech data captured at the clinical sites were as intended, and there were no significant issues. All the home monitoring sensor data available were propagated through the system and were received as expected. However, the amount and quality of physical activity home monitoring data were lower than anticipated. A total of 3 or more days (or partial days) of data were recorded for 65% of protocol time points, with no data collected for 24% of time points. At baseline, 24 of 25 patients provided data, reduced to 13 of 18 patients at Week 48. Lower-than-expected quality HRV data were obtained, likely because of poor contact between the sensor and the skin. In total, 6 of 25 patients had mild or moderate adverse events (AEs) in the skin and subcutaneous tissue disorders category because of skin irritation caused by the electrode patch. There were no reports of serious AEs or deaths. Most patients found the sensor comfortable, with no or minimal impact on daily activities. Conclusions The platform can measure physical activity in patients with ALS in their home environment; patients used the equipment successfully, and it was generally well tolerated. The quantity of home monitoring physical activity data was lower than expected, although it was sufficient to allow investigation of novel physical activity end points. Good-quality in-clinic speech data were successfully captured for analysis. Future studies using objective patient monitoring approaches, combined with the most current technological advances, may be useful to elucidate novel digital biomarkers of disease progression.
A minority (10%–15%) of cases of amyotrophic lateral sclerosis (ALS), the most common form of motor neurone disease (MND), are currently attributable to pathological variants in a single identifiable gene. With the emergence of new therapies targeting specific genetic subtypes of ALS, there is an increasing role for routine genetic testing for all those with a definite diagnosis. However, potential harm to both affected individuals and particularly to asymptomatic relatives can arise from the indiscriminate use of genetic screening, not least because of uncertainties around incomplete penetrance and variants of unknown significance. The most common hereditary cause of ALS, an intronic hexanucleotide repeat expansion in C9ORF72, may be associated with frontotemporal dementia independently within the same pedigree. The boundary of what constitutes a possible family history of MND has therefore extended to include dementia and associated psychiatric presentations. Notwithstanding the important role of clinical genetics specialists, all neurologists need a basic understanding of the current place of genetic testing in MND, which holds lessons for other neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.