The performance of indwelling medical devices that depend on an interface with soft tissue is plagued by complex, unpredictable foreign body responses. Such devices—including breast implants, biosensors, and drug delivery devices—are often subject to a collection of biological host responses, including fibrosis, which can impair device functionality. This work describes a milliscale dynamic soft reservoir (DSR) that actively modulates the biomechanics of the biotic-abiotic interface by altering strain, fluid flow, and cellular activity in the peri-implant tissue. We performed cyclical actuation of the DSR in a preclinical rodent model. Evaluation of the resulting host response showed a significant reduction in fibrous capsule thickness (P = 0.0005) in the actuated DSR compared with non-actuated controls, whereas the collagen density and orientation were not changed. We also show a significant reduction in myofibroblasts (P = 0.0036) in the actuated group and propose that actuation-mediated strain reduces differentiation and proliferation of myofibroblasts and therefore extracellular matrix production. Computational models quantified the effect of actuation on the reservoir and surrounding fluid. By adding a porous membrane and a therapy reservoir to the DSR, we demonstrate that, with actuation, we could (i) increase transport of a therapy analog and (ii) enhance pharmacokinetics and time to functional effect of an inotropic agent. The dynamic reservoirs presented here may act as a versatile tool to further understand, and ultimately to ameliorate, the host response to implantable biomaterials.
Fibrous capsule (FC) formation, secondary to the foreign body response (FBR), impedes molecular transport and is detrimental to the long-term efficacy of implantable drug delivery devices, especially when tunable, temporal control is necessary. We report the development of an implantable mechanotherapeutic drug delivery platform to mitigate and overcome this host immune response using two distinct, yet synergistic soft robotic strategies. Firstly, daily intermittent actuation (cycling at 1 Hz for 5 minutes every 12 hours) preserves long-term, rapid delivery of a model drug (insulin) over 8 weeks of implantation, by mediating local immunomodulation of the cellular FBR and inducing multiphasic temporal FC changes. Secondly, actuation-mediated rapid release of therapy can enhance mass transport and therapeutic effect with tunable, temporal control. In a step towards clinical translation, we utilise a minimally invasive percutaneous approach to implant a scaled-up device in a human cadaveric model. Our soft actuatable platform has potential clinical utility for a variety of indications where transport is affected by fibrosis, such as the management of type 1 diabetes.
Medical devices, such as silicone-based prostheses designed for soft tissue implantation, often induce a suboptimal foreign-body response which results in a hardened avascular fibrotic capsule around the device, often leading to patient discomfort or implant failure. Here, it is proposed that additive manufacturing techniques can be used to deposit durable coatings with multiscale porosity on soft tissue implant surfaces to promote optimal tissue integration. Specifically, the "liquid rope coil effect", is exploited via direct ink writing, to create a controlled macro open-pore architecture, including over highly curved surfaces, while adapting atomizing spray deposition of a silicone ink to create a microporous texture. The potential to tailor the degree of tissue integration and vascularization using these fabrication techniques is demonstrated through subdermal and submuscular implantation studies in rodent and porcine models respectively, illustrating the implant coating's potential applications in both traditional soft tissue prosthetics and active drug-eluting devices.
In article number 2000305 by Ellen T. Roche, Eimear B. Dolan, and co‐workers, a new regenerative reservoir platform (Regenervoir) is described for use in large animal models that are easily translated to human studies, with relevance to cardiac, abdominal, and soft tissue pathologies. Regenervoir incorporates multiple novel design features essential for clinical translation, with a focus on scalability, mechanism of delivery, fixation, and filling/refilling with a therapeutic cargo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.