IntroductionThe aim of this study was to explore changes in glomerular filtration (GFR) and renal tubular function in critically ill patients at risk of augmented renal clearance (ARC), using exogenous marker compounds.MethodsThis prospective, observational pharmacokinetic (PK) study was performed in a university-affiliated, tertiary-level, adult intensive care unit (ICU). Patients aged less than or equal to 60 years, manifesting a systemic inflammatory response, with an expected ICU length of stay more than 24 hours, no evidence of acute renal impairment (plasma creatinine concentration <120 μmol/L) and no history of chronic kidney disease or renal replacement therapy were eligible for inclusion. The following study markers were administered concurrently: sinistrin 2,500 mg (Inutest; Laevosan, Linz, Austria), p-aminohippuric acid (PAH) 440 mg (4% p-aminohippuric acid sodium salt; CFM Oskar Tropitzsch, Marktredwitz, Germany), rac-pindolol 5 or 15 mg (Barbloc; Alphapharm, Millers Point, NSW, Australia) and fluconazole 100 mg (Diflucan; Pfizer Australia Pty Ltd, West Ryde, NSW, Australia). Plasma concentrations were then measured at 5, 10, 15, 30, 60 and 120 minutes and 4, 6, 12 and 24 hours post-administration. Non-compartmental PK analysis was used to quantify GFR, tubular secretion and tubular reabsorption.ResultsTwenty patients were included in the study. Marker administration was well tolerated, with no adverse events reported. Sinistrin clearance as a marker of GFR was significantly elevated (mean, 180 (95% confidence interval (CI), 141 to 219) ml/min) and correlated well with creatinine clearance (r =0.70, P <0.01). Net tubular secretion of PAH, a marker of tubular anion secretion, was also elevated (mean, 428 (95% CI, 306 to 550) ml/min), as was net tubular reabsorption of fluconazole (mean, 135 (95% CI, 100 to 169) ml/min). Net tubular secretion of (S)- and (R)-pinodolol, a marker of tubular cation secretion, was impaired.ConclusionsIn critically ill patients at risk of ARC, significant alterations in glomerular filtration, renal tubular secretion and tubular reabsorption are apparent. This has implications for accurate dosing of renally eliminated drugs.
BackgroundThe Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) estimated glomerular filtration rate (eGFR) has been widely integrated into clinical practice. Although useful in screening for CKD, its’ application in critically ill patients with normal plasma creatinine concentrations remains uncertain. The aim of this study was to assess the performance of CKD-EPI eGFR in comparison to creatinine clearance (CLCR) in this setting.MethodsThis prospective observational study was performed in a tertiary level, university affiliated intensive care unit (ICU). Study participants had to have an expected ICU length of stay > 24 hours, a plasma creatinine concentration < 121 μmol/L, and no history of prior renal replacement therapy or CKD. CKD-EPI eGFR was compared against 8-hour measured urinary CLCR. Data capture occurred within 48 hours of admission.ResultsOne hundred and ten patients (n = 110) were enrolled in the study. 63.6% were male, the mean age was 50.9 (16.9) years, 57.3% received invasive mechanical ventilation, and 30% required vasopressor support. The mean CLCR was 125 (45.1) ml/min/1.73 m2, compared to a CKD-EPI eGFR of 101 (23.7) ml/min/1.73 m2 (P < 0.001). Moderate correlation was evident (r = 0.72), although there was significant bias and imprecision (24.4 +/− 32.5 ml/min/1.73 m2). In those patients with a CKD-EPI eGFR between 60–119 ml/min/1.73 m2 (n = 77), 41.6% displayed augmented renal clearance (CLCR ≥ 130 ml/min/1.73 m2), while 7.8% had a CLCR < 60 ml/min/1.73 m2.ConclusionsThese data suggest CKD-EPI eGFR and measured CLCR produce significantly disparate results when estimating renal function in this population. Clinicians should consider carefully which value they employ in clinical practice, particularly drug dose modification.
Augmented renal clearance (ARC) is being increasingly described in neurocritical care practice. The mechanisms driving this phenomenon are largely unknown. The aim of this project was therefore to explore changes in renal function, cardiac output (CO), and atrial natriuretic peptide (ANP) concentrations in patients with isolated traumatic brain injury (TBI). This prospective observational cohort study was conducted in a tertiary-level, university-affiliated intensive care unit (ICU). Patients with normal plasma creatinine concentrations (<120 μmol/L) at admission and no history of chronic kidney disease, admitted with isolated TBI, were eligible for enrollment. Continuous CO measures were obtained using arterial pulse waveform analysis. Eight-hour urinary creatinine clearances (CL) were used to quantify renal function. ANP concentrations in plasma were measured on alternate days. Data were collected from study enrollment until ICU discharge, death, or day 15, which ever came first. Eleven patients, contributing 100 ICU days of physiological data, were enrolled into the study. Most participants were young men, requiring mechanical ventilation. Median ICU length of stay was 9.6 [7.8-13.0] days. Elevated CL measures (>150 mL/min) were frequent and appeared to parallel changes in CO. Plasma ANP concentrations were also significantly elevated over the study period (minimum value = 243 pg/mL). These data suggest that ARC is likely to complicate the care of TBI patients with normal plasma creatinine concentrations, and may be driven by associated cardiovascular changes and/or elevated plasma ANP concentrations. However, significant additional research is required to further understand these findings.
This is the first paper describing the pharmacokinetics/pharmacodynamics of doripenem in critically ill patients with AKI receiving CVVHDF. A dose of 500 mg intravenously every 8 h was appropriate for our CVVHDF settings for infections caused by susceptible bacteria.
Patients with septic shock and controls do not differ in their median glucocorticoid sensitivity. However, patients exhibited a greater variability in glucocorticoid responsiveness and had evidence of association between increased sickness sensitivity and reduced glucocorticoid sensitivity. Sensitivity to glucocorticoids did not appear to be mediated by changes in the expression of the β variant of the glucocorticoid receptor or the 11-β hydroxysteroid dehydrogenase 2 isozyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.