Magnetic frustration effects in artificial kagome arrays of nanomagnets are investigated using x-ray photoemission electron microscopy and Monte Carlo simulations. Spin configurations of demagnetized networks reveal unambiguous signatures of long range, dipolar interaction between the nanomagnets. As soon as the system enters the spin ice manifold, the kagome dipolar spin ice model captures the observed physics, while the short range kagome spin ice model fails.
The spin structure of head-to-head domain walls in Ni 80 Fe 20 structures is studied using high-resolution photoemission electron microscopy. The quantitative phase diagram is extracted from these measurements and found to exhibit two phase boundaries between vortex and transverse domain walls. The results are compared with available theoretical predictions and micromagnetic simulations and differences to the experiment are explained, taking into account thermal excitations. Temperature-dependent measurements show a thermally activated transformation of transverse to vortex domain walls in 7 nm thick and 730 nm wide structures at a transition temperature between 260°C and 310°C, which corresponds to a nucleation barrier height for a vortex wall between 6.7ϫ 10 −21 J and 8.0ϫ 10 −21 J.
Nitrogen doping of graphene is of great interest for both fundamental research to explore the effect of dopants on a 2D electrical conductor and applications such as lithium storage, composites, and nanoelectronic devices. Here, we report on the modifications of the electronic properties of epitaxial graphene thanks to the introduction, during the growth, of nitrogen-atom substitution in the carbon honeycomb lattice. High-resolution transmission microscopy and low-energy electron microscopy investigations indicate that the nitrogen-doped graphene is uniform at large scale. The substitution of nitrogen atoms in the graphene planes was confirmed by high-resolution X-ray photoelectron spectroscopy, which reveals several atomic configurations for the nitrogen atoms: graphitic-like, pyridine-like, and pyrrolic-like. Angle-resolved photoemission measurements show that the N-doped graphene exhibits large n-type carrier concentrations of 2.6 × 10(13) cm(-2), about 4 times more than what is found for pristine graphene, grown under similar pressure conditions. Our experiments demonstrate that a small amount of dopants (<1%) can significantly tune the electronic properties of graphene by shifting the Dirac cone about 0.3 eV toward higher binding energies with respect to the π band of pristine graphene, which is a key feature for envisioning applications in nanoelectronics.
The growth of large and uniform graphene layers remains very challenging to this day due to the close correlation between the electronic and transport properties and the layer morphology. Here, we report the synthesis of uniform large-scale mono- and bilayers of graphene on off-axis 6H-SiC(0001) substrates. The originality of our approach consists of the fine control of the growth mode of the graphene by precise control of the Si sublimation rate. Moreover, we take advantage of the presence of nanofacets on the off-axis substrate to grow a large and uniform graphene with good long-range order. We believe that our approach represents a significant step toward the scalable synthesis of graphene films with high structural qualities and fine thickness control, in order to develop graphene-based electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.