Progressive control pathways (PCPs) are stepwise approaches for the reduction, elimination, and eradication of human and animal diseases. They provide systematic frameworks for planning and evaluating interventions. Here we outline a PCP for tsetse-transmitted animal trypanosomosis, the scourge of poor livestock keepers in tropical Africa. Initial PCP stages focus on the establishment of national coordination structures, engagement of stakeholders, development of technical capacities, data collection and management, and pilot field interventions. The intermediate stage aims at a sustainable and economically profitable reduction of disease burden, while higher stages target elimination. The mixed-record of success and failure in past efforts against African animal trypanosomosis (AAT) makes the development of this PCP a high priority.
In Subsaharan Africa, tsetse flies (genus Glossina) are vectors of trypanosomes causing Human African Trypanosomiasis (HAT) and Animal African Trypanosomosis (AAT). Some foci of HAT persist in Southern Chad, where a program of tsetse control was started against the local vector Glossina fuscipes fuscipes in the Mandoul focus in 2014, and in Maro in 2018. Flies were also sampled in 2018 in Timbéri and Dokoutou. We analyzed the population genetics of G. fuscipes fuscipes from the four tsetse-infested zones. The trapping samples were characterized by a strong female biased sex-ratio, except in Timbéri and Dokoutou that had high tsetse densities. Apparent density and effective population density appeared smaller in the main foci of Mandoul and Maro and the average dispersal distance (within the spatial scale of each zone) was as large as or larger than the total length of each respective zone. The genetic signature of a population bottleneck was found in the Mandoul and Timbéri area, suggesting a large ancient interconnected metapopulation that underwent genetic subdivision into small, isolated pockets due to adverse environmental conditions. The long-range dispersal and the existence of genetic outliers suggest a possibility of migration from remote sites such as the Central African Republic in the south (although the fly situation remains unknown there) and/or a genetic signature of recent exchanges. Due to likely isolation, an eradication strategy may be considered for sustainable HAT control in Mandoul focus. Another strategy will probably be required in Maro focus, which probably experiences much more exchanges with its neighbors.
Aedes albopictus and Aedes aegypti are the main vectors of arboviral diseases such as dengue, Zika and chikungunya viruses. About a third of the world population is currently at risk of contracting Aedes-borne epidemics. In recent years, Ae. albopictus has drastically increased its distribution in many countries. In the absence of efficient mosquito vector control methods, the sterile insect technique (SIT) is presented as a very promising and environment-friendly control tool. The Agriculture Department of the Valencian Region is promoting an ongoing pilot project to evaluate the efficacy of an integrated vector management program (IVM) based on the use of the SIT as the main method of control. The laboratory studies for evaluating the entomological efficacy of SIT through the phased conditional testing process recommended by World Health Organization and the International Atomic Energy Agency (WHO-IAEA) are addressed. This study describes the routine operating procedures and quality control parameters for the medium-scale rearing of sterile male Ae. albopictus. More than 15 million sterile males have been produced and released in an area of 80 ha between 2018 and 2020. Of the initial L1 larvae, we recovered 17.2% of male pupae after sex sorting to be sterilized and released on the field, while the rest of the pupae remained available to maintain the rearing colony. The residual percentage of females after sex sorting was on average 0.17%. The obtained values in terms of production and quality control as well as the proposed rearing methodology can be useful for designing a medium-scale mosquito-rearing pipeline.
The sterile insect technique (SIT) application, as an alternative tool for conventional mosquito control methods, has recently gained prominence. Nevertheless, some SIT components require further development, such as protocols under large-scale conditions, focusing on packing and shipping mosquitoes, and considering transporting time. Immobilization of Aedes aegypti males was tested at temperatures 4, 7, 10, and 14 °C, and each temperature was assessed for 60, 90, and 120 min. The recovery after 24 h was also studied. Chilled and control-reared males had comparable survival rates for all conditions, although 4 °C for 120 min impacted male survival. The male escape rate was affected after 60 min of exposure at 4 °C; this difference was not significant, with 24 h of recovery. First, we defined the successful immobilization at 4 °C for 60 min, thus enabling the evaluation of two transportation intervals: 6 and 24 h, with the assessment of different compaction densities of 100 and 150 mosquitoes/cm3 at 10 °C to optimize the shipment. Compaction during simulated mosquito shipments reduced survival rates significantly after 6 and 24 h. In the mating propensity and insemination experiments, the sterile males managed to inseminate 40 to 66% for all treatments in laboratory conditions. The male insemination propensity was affected only by the highest compaction condition concerning the control. The analysis of the densities (100 and 150 males/cm3) showed that a higher density combined with an extended shipment period (24 h) negatively impacted the percentage of inseminated females. The results are very helpful in developing and improving the SIT packing and shipment protocols. Further studies are required to evaluate all combined parameters’ synergetic effects that can combine irradiation to assess sexual competitiveness when sterile males are released into the field.
Successful implementation of the sterile insect technique (SIT) against Aedes albopictus and Anopheles arabiensis relies on a continuous supply of sterile males. To meet this requirement, optimization of the mass-rearing techniques is needed. This study, therefore, aims to assess a new mass-rearing cage (MRC) in terms of egg production efficiency and egg hatch rate (quality). In addition, adult survival was evaluated based on a cage adult-index for Ae. albopictus. Moreover, the cage’s suitability for use in mass An. arabiensis egg production was compared to that of the FAO/IAEA Anopheles reference cage. In Ae. albopictus rearing, the new MRC produced 1,112,110 eggs per cage following six blood meals, with minimum loss of eggs in the egging water. Furthermore, the adult index gave a good proxy of daily mortality rates in Ae. albopictus. In An. arabiensis rearing, about 130,000 eggs per egg batch were collected both from the new and the reference MRC. These findings suggest that the new MRC prototype is efficient in terms of egg production and can be used for mass-rearing in SIT programs targeting Ae. albopictus as well as An. arabiensis. The adult index was also positively validated for the detection of unusual mortality rates in Ae. albopictus mass-rearing facilities. Overall, the new MRC has shown several advantages; however, further improvements are necessary to minimize escapes during the egg collection processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.