Novel amine- or ammonium-terminated carbosilane dendrimers of type nG-[Si{OCH2(C6H3)-3,5-(OCH2CH2NMe2)2}]x, nG-[Si{O(CH2)2N(Me)(CH2)2NMe2}]x and nG-[Si{(CH2)3NH2}]x or nG-[Si{OCH2(C6H3)-3,5-(OCH2CH2NMe3 +I-)2}]x, nG-[Si{O(CH2)2N(Me)(CH2)2NMe3 +I-}]x, and nG-[Si{(CH2)3NH3 +Cl-}]x have been synthesized and characterized up to the third generation by two strategies: 1) alcoholysis of Si--Cl bonds with amino alcohols and subsequent quaternization with MeI, and 2) hydrosilylation of allylamine with Si--H bonds of the dendritic systems and subsequent quaternization with HCl. Quaternized carbosilane dendrimers are soluble in water, although degradation is apparent due to hydrolysis of Si--O bonds. However, dendrimers containing Si--C bonds are water-stable. The biocompatibility of the second-generation dendrimers in primary cell cultures of peripheral blood mononuclear cells (PBMCs) and erythrocytes have been analyzed, and they show good toxicity profiles over extended periods. In addition, we describe a study on the interactions between the different carbosilane dendrimers and DNA oligodeoxynucleotides (ODNs) and plasmids along with a comparative analysis of their toxicity. They can form complexes with DNA ODNs and plasmids at biocompatible doses via electrostatic interaction. Also a preliminary transfection assay has been accomplished. These results demonstrate that the new ammonium-terminated carbosilane dendrimers are good base molecules to be considered for biomedical applications.
The aim of this work was to design strategies to improve the performance of solid-state lasers and amplifiers based on perylenediimide (PDI) derivatives as active materials. So, the effect of different types of modifications of the chemical structure of PDIs in their spectral, electrochemical, and laser properties in both solution and PDI-doped polystyrene films at various concentrations has been investigated. In particular, we focused on controlling the wavelength of emission in order to tune the laser wavelength as well as in increasing the amount of PDI in the films in order to decrease the laser thresholds, while keeping a good photostability. Three types of modifications of the chemical structure were investigated: (a) symmetrical substitution at the imide nitrogen positions (PDI 1); (b) substitution at the bay positions in the PDI core (PDI 4); and (c) modification in the dicarboximide group (PDI 5). All three derivatives were soluble and showed good n-type acceptor ability. Routes b and c led to red shifts in the absorption and photoluminescence (PL) emission, although the PL quantum yield decreased considerably. Amplified spontaneous emission (ASE) was observed in films doped with PDI 1 (λ ) 579 nm) and PDI 4 (λ ) 599 nm). The best performance, with an ASE threshold of 15 kW/cm 2 and a photostability halflife of 31 × 10 3 pump pulses, was obtained for films doped with 0.75 wt % of PDI 1 (route 1). PDI 1-based materials are among the most photostable reported in the literature and show very-reasonable thresholds. Moreover, these materials are particularly interesting in the field of data communications based on polymer optical fibers because they emit at wavelengths close to 570 nm, which constitutes the second low-loss transmission window in poly(methyl methacrylate).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.