The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species-less diverse than the North American tree flora-accounts for half of the world's most diverse tree community
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
The Amazon basin is covered by the most species-rich forests in the world and is considered to house many endemic tree species. Yet, most Amazonian ecosystems lack reliable estimates of their degree of endemism, and causes of tree diversity and endemism are intense matters of debate. We reviewed the spatial distribution of 658 of the most important floodtolerant Amazonian white-water (várzea) tree species across the entire Neotropics by using data from herbaria, floras, inventories and checklists. Our results show that 90% of the várzea tree species are partially or widely distributed across neotropical macro-regions and biomes. Chi-square analyses indicated that várzea species richness in non-várzea macro-regions was dependent on the flooding gradient and the longitudinal position. Cluster analysis combined with association tests indicated four significant patterns of várzea species distributions depending on species flood-tolerance (low vs high) and spatial distribution (restricted vs widespread). We predict that the predominance of Andean substrates is the most important factor that determines the distribution of várzea tree species within and beyond the Amazon basin and explains the high floristic similarity to the Orinoco floodplains. Distribution patterns in other extra-Amazonian macro-regions are more likely linked to climatic factors, with rainforest climates housing more várzea species than savanna climates. 130 tree species were restricted to South-American freshwater floodplains, and 68 ( 10%) were endemic to Amazonian várzea. We detected two centers of endemism, one in the western Amazon characterized by low and brief floods, and one in the central Amazon, characterized by high and prolonged floods. Differences in taxonomic composition of endemic centers in the western and central Amazon are the result of different abiotic factors (i.e. flood regimes), as well as the regional species pools from where the species are recruited from.We hypothesize that numerous morphological, physiological and biochemical adaptations permit survival of trees in flooded environments. Furthermore, these adaptations are independently derived across many taxa and result in a highly specialized flora. We attribute higher than expected levels of endemism to the great spatial extent and age of floodplain ecosystems in the Amazon basin, and highlight the role of Amazonian várzea as an potential driver in speciation and diversification processes.Freshwater floodplains cover an area of approximately 1.7 million square kilometres within the Amazon basin and include seasonally inundated forests, riparian zones, swamps, and high elevation bogs (Junk et al. 2011). Many Amazonian tree species are adapted to cope with permanently, seasonally or episodically waterlogged soils and associated disturbance, such as hypoxia or anoxia. The inundation of roots and/or aboveground organs of trees reduces oxygen supply to submerged tissues and thus is widely considered a potential stress factor (Armstrong et al. 1994). Trees subject to waterlogg...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.