Almost simultaneously, several studies reported the emergence of novel SARS-CoV-2 lineages characterized by their phylogenetic and genetic distinction (1), (2), (3), (4).…
In this study, we report the sequencing of 180 new viral genomes obtained from different municipalities of the state of Rio de Janeiro from April to December 2020. We identified a novel lineage of SARS-CoV-2, originated from B.1.1.28, distinguished by five single-nucleotide variants (SNVs): C100U, C28253U, G28628U, G28975U, and C29754U. The SNV G23012A (E484K), in the receptor-binding domain of Spike protein, was widely spread across the samples. This mutation was previously associated with escape from neutralizing antibodies against SARS-CoV-2. This novel lineage emerged in late July being first detected by us in late October and still mainly restricted to the capital of the state. However, as observed for other strains it can be rapidly spread in the state. The significant increase in the frequency of this lineage raises concerns about public health management and continuous need for genomic surveillance during the second wave of infections.Article Summary LineWe identified a novel circulating lineage of SARS-CoV-2 in the state of Rio de Janeiro Brazil originated from B.1.1.28 lineage.
Long-term infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a challenge to virus dispersion and the control of coronavirus disease 2019 (COVID-19) pandemic. The reason why some people have prolonged infection and how the virus persists for so long are still not fully understood. Recent studies suggested that the accumulation of intra-host single nucleotide variants (iSNVs) over the course of the infection might play an important role in persistence as well as emergence of mutations of concern. For this reason, we aimed to investigate the intra-host evolution of SARS-CoV-2 during prolonged infection. Thirty-three patients who remained reverse transcription polymerase chain reaction (RT-PCR) positive in the nasopharynx for on average 18 days from the symptoms onset were included in this study. Whole-genome sequences were obtained for each patient at two different time points. Phylogenetic, populational, and computational analyses of viral sequences were consistent with prolonged infection without evidence of coinfection in our cohort. We observed an elevated within-host genomic diversity at the second time point samples positively correlated with cycle threshold (Ct) values (lower viral load). Direct transmission was also confirmed in a small cluster of healthcare professionals that shared the same workplace by the presence of common iSNVs. A differential accumulation of missense variants between the time points was detected targeting crucial structural and non-structural proteins such as Spike and helicase. Interestingly, longitudinal acquisition of iSNVs in Spike protein coincided in many cases with SARS-CoV-2 reactive and predicted T cell epitopes. We observed a distinguishing pattern of mutations over the course of the infection mainly driven by increasing A→U and decreasing G→A signatures. G→A mutations may be associated with RNA-editing enzyme activities; therefore, the mutational profiles observed in our analysis were suggestive of innate immune mechanisms of the host cell defense. Therefore, we unveiled a dynamic and complex landscape of host and pathogen interaction during prolonged infection of SARS-CoV-2, suggesting that the host’s innate immunity shapes the increase of intra-host diversity. Our findings may also shed light on possible mechanisms underlying the emergence and spread of new variants resistant to the host immune response as recently observed in COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.