Summary
Mechanotransduction, a key determinant of tissue homeostasis and tumor progression, is driven by intercellular adhesions, cell contractility and forces generated with the microenvironment, dependent on extracellular matrix composition, organization and compliance. Caveolin-1 (Cav1) favors cell elongation in 3D cultures and promotes Rho-and force-dependent contraction, matrix alignment and microenvironment stiffening through regulation of p190RhoGAP. In turn, microenvironment remodeling by Cav1-fibroblasts forces cell elongation. Cav1-deficient mice have disorganized stromal tissue architecture. Stroma associated with human carcinomas and melanoma metastases is enriched in Cav1-expressing carcinoma-associated fibroblasts (CAFs). Cav1 expression in breast CAFs correlates with low survival, and Cav1 depletion in CAFs decreases CAF contractility. Consistently, fibroblast expression of Cav1, through p190RhoGAP regulation, favors directional migration and invasiveness of carcinoma cells in vitro. In vivo, stromal Cav1 remodels peri- and intratumoral microenvironments to facilitate tumor invasion, correlating with increased metastatic potency. Thus, Cav1 modulates tissue responses through force-dependent architectural regulation of the microenvironment.
Macrophage activation comprises a continuum of functional states critically determined by cytokine microenvironment. Activated macrophages have been functionally grouped according to their response to pro-Th1/proinflammatory stimuli [lipopolysaccharide, IFNγ, granulocyte macrophage colony-stimulating factor (GM-CSF); M1] or pro-Th2/antiinflammatory stimuli [interleukin (IL)-4, IL-10, M-CSF; M2]. We report that folate receptor β (FRβ), encoded by the FOLR2 gene, is a marker for macrophages generated in the presence of M-CSF (M2), but not GM-CSF (M1), and whose expression correlates with increased folate uptake ability. The acquisition of folate uptake ability by macrophages is promoted by M-CSF, maintained by IL-4, prevented by GM-CSF, and reduced by IFNγ, indicating a link between FRβ expression and M2 polarization. In agreement with in vitro data, FRβ expression is detected in tumor-associated macrophages (TAM), which exhibit an M2-like functional profile and exert potent immunosuppressive functions within the tumor environment. FRβ is expressed, and mediates folate uptake, by CD163 + CD68 + CD14 + IL-10-producing TAM, and its expression is induced by tumorderived ascitic fluid and conditioned medium from fibroblasts and tumor cell lines in an M-CSF-dependent manner. These results establish FRβ as a marker for M2 regulatory macrophage polarization and indicate that folate conjugates of therapeutic drugs are a potential immunotherapy tool to target TAM. [Cancer Res 2009;69(24):9395-403]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.