The standard recurrent neural network language model (rnnlm) generates sentences one word at a time and does not work from an explicit global sentence representation. In this work, we introduce and study an rnn-based variational autoencoder generative model that incorporates distributed latent representations of entire sentences. This factorization allows it to explicitly model holistic properties of sentences such as style, topic, and high-level syntactic features. Samples from the prior over these sentence representations remarkably produce diverse and well-formed sentences through simple deterministic decoding. By examining paths through this latent space, we are able to generate coherent novel sentences that interpolate between known sentences. We present techniques for solving the difficult learning problem presented by this model, demonstrate its effectiveness in imputing missing words, explore many interesting properties of the model's latent sentence space, and present negative results on the use of the model in language modeling.
We use reinforcement learning (RL) to learn dexterous in-hand manipulation policies that can perform vision-based object reorientation on a physical Shadow Dexterous Hand. The training is performed in a simulated environment in which we randomize many of the physical properties of the system such as friction coefficients and an object’s appearance. Our policies transfer to the physical robot despite being trained entirely in simulation. Our method does not rely on any human demonstrations, but many behaviors found in human manipulation emerge naturally, including finger gaiting, multi-finger coordination, and the controlled use of gravity. Our results were obtained using the same distributed RL system that was used to train OpenAI Five. We also include a video of our results: https://youtu.be/jwSbzNHGflM .
Neuroscience is experiencing a data revolution in which simultaneous recording of many hundreds or thousands of neurons is revealing structure in population activity that is not apparent from single-neuron responses. This structure is typically extracted from trial-averaged data. Single-trial analyses are challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. Here we introduce Latent Factor Analysis via Dynamical Systems (LFADS), a deep learning method to infer latent dynamics from single-trial neural spiking data. LFADS uses a nonlinear dynamical system (a recurrent neural network) to infer the dynamics underlying observed population activity and to extract 'de-noised' single-trial firing rates from neural spiking data. We apply LFADS to a variety of monkey and human motor cortical datasets, demonstrating its ability to predict observed behavioral variables with unprecedented accuracy, extract precise estimates of neural dynamics on single trials, infer perturbations to those dynamics that correlate with behavioral choices, and combine data from non-overlapping recording sessions (spanning months) to improve inference of underlying dynamics. In summary, LFADS leverages all observations of a neural population's activity to accurately model its dynamics on single trials, opening the door to a detailed understanding of the role of dynamics in performing computation and ultimately driving behavior.Increasing evidence suggests that in many brain areas, such as the motor and prefrontal cortices, the activity of large populations of neurons, termed the neural population state, is often well-described by low-dimensional dynamics [e.g. (Afshar et al. 2011; Harvey, Coen, and Tank 2012; Kaufman et al. 2014;Sadtler et al. 2014;Kobak et al. 2016a) ]. Recovering these dynamics on single trials is essential for illuminating the relationship between neural population activity and behavior, and for advancing therapeutic neurotechnologies such as closed-loop deep brain stimulation and brain-machine interfaces. However, recovering population dynamics All rights reserved. No reuse allowed without permission.(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint . http://dx.doi.org/10.1101/152884 doi: bioRxiv preprint first posted online Jun. 20, 2017; on single trials is difficult due to trial-to-trial variability (e.g. in behavior or arousal) and fluctuations in the spiking of individual neurons. Even with dramatic increases in the numbers of neurons that can be simultaneously recorded using multichannel electrode arrays or optical imaging, accurately recovering population dynamics from single trials remains a significant challenge for data-analysis methods.Standard analyses sacrifice single-trial information for the sake of better estimates of trial-averaged neural states (Ahrens et al. 2012; Kobak et al. 2016b) . Techniques for extrac...
Neuroscience is experiencing a revolution in which simultaneous recording of thousands of neurons is revealing population dynamics that are not apparent from single-neuron responses. This structure is typically extracted from data averaged across many trials, but deeper understanding requires studying phenomena detected in single trials, which is challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. We introduce latent factor analysis via dynamical systems, a deep learning method to infer latent dynamics from single-trial neural spiking data. When applied to a variety of macaque and human motor cortical datasets, latent factor analysis via dynamical systems accurately predicts observed behavioral variables, extracts precise firing rate estimates of neural dynamics on single trials, infers perturbations to those dynamics that correlate with behavioral choices, and combines data from non-overlapping recording sessions spanning months to improve inference of underlying dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.