Internet of Things (IoT) devices may transfer data to the gateway/application server through File Transfer Protocol (FTP) transaction. Unfortunately, in terms of security, the FTP server at a gateway or data sink very often is improperly set up. At the same time, password matching/theft holding is among the popular attacks as the intruders attack the IoT network. Thus, this paper attempts to provide an insight of this type of attack with the main aim of coming up with attack patterns that may help the IoT system administrator to analyze any similar attacks. This paper investigates brute force attack (BFA) on the FTP server of the IoT network by using a time-sensitive statistical relationship approach and visualizing the attack patterns that identify its configurations. The investigation focuses on attacks launched from the internal network, due to the assumption that the IoT network has already installed a firewall. An insider/internal attack launched from an internal network endangers more the entire IoT security system. The experiments use the IoT network testbed that mimic the internal attack scenario with three major goals: (i) to provide a topological description on how an insider attack occurs; (ii) to achieve attack pattern extraction from raw sniffed data; and (iii) to establish attack pattern identification as a parameter to visualize real-time attacks. Experimental results validate the investigation.
Abstract-Hacking attempts or cyber-attacks to information systems have recently evolved to be sophisticated and deadly, resulting in such incidents as leakage of personal information and system destruction. While various security solutions to cope with these risks are being developed and deployed, it is still necessary to systematically consider the methods to enhance the existing security system and build more effective defense systems. Under this circumstance, it is necessary to identify the latest types of attacks attempted to the primary security system. This paper analyzes cyber attack techniques as well as the anatomy of penetration test in order to assist security officers to perform appropriate self security assesment on their network systems.
The difficulty of the intrusion detection system in heterogeneous networks is significantly affected by devices, protocols, and services, thus the network becomes complex and difficult to identify. Deep learning is one algorithm that can classify data with high accuracy. In this research, we proposed deep learning to intrusion detection system identification methods in heterogeneous networks to increase detection accuracy. In this paper, we provide an overview of the proposed algorithm, with an initial experiment of denial of services (DoS) attacks and results. The results of the evaluation showed that deep learning can improve detection accuracy in the heterogeneous internet of things (IoT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.