Graphene near charge neutrality is expected to behave like a quantum-critical, relativistic plasma—the “Dirac fluid”—in which massless electrons and holes rapidly collide at a rapid rate. We measure the frequency-dependent optical conductivity of clean, micron-scale graphene at electron temperatures between 77 and 300 K using on-chip terahertz spectroscopy. At charge neutrality, we observe the quantum-critical scattering rate characteristic of the Dirac fluid. At higher doping, we uncover two distinct current-carrying modes with zero and nonzero total momenta, a manifestation of relativistic hydrodynamics. Our work reveals the quantum criticality and unusual dynamic excitations near charge neutrality in graphene.
Due to their low dimensionality, two-dimensional semiconductors, such as monolayer molybdenum disulfide, have a range of properties that make them valuable in the development of nanoelectronics. For example, the electronic bandgap of these semiconductors is not an intrinsic physical parameter and can be engineered through the dielectric environment around the monolayer. Here we show that this dielectric dependent electronic bandgap can be used to engineer a lateral heterojunction within a homogeneous MoS 2 monolayer. We visualize the heterostructure with Kelvin probe force microscopy and examine its influence on electrical transport experimentally and theoretically. We observe a lateral heterojunction with ~90 meV band offset due to different bandgap renormalization of monolayer MoS 2 when it is on a substrate in which one segment is made from an amorphous fluoropolymer (Cytop) and another segment from hexagonal boron nitride. This heterostructure leads to a diode-like electrical transport with a strong asymmetric behaviour.
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge–based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge–based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.
We describe a Si-Ge-silica monolithic integration platform for telecommunications applications. The monolithic integration process features low-temperature silica film deposition by electron-cyclotron-resonance chemical vapor deposition to prevent thermal damage to Si/Ge active devices. The monolithically integrated Si and SiOx waveguides show propagation losses of 2.8 and 0.9 dB/cm, and the inverse-tapered spot-size converters show a coupling loss of 0.35 dB. We applied the platform to a 22-Gb/s  16-ch wavelengthdivision multiplexing receiver, in which a 16-ch SiOx arrayed waveguide grating (AWG) with 1.6-nm channel separation and Ge photodiodes (PDs) are monolithically integrated. The AWG-PD device exhibits fiber-to-PD responsivity of 0.29 A/W and interchannel crosstalk of less than À22 dB and successfully receives 22-Gb/s signal for all 16 channels. In addition, we demonstrate 40-km transmission of 12.5-Gb/s signal and obtain sensitivity of À6.8 dBm at a bit error rate of 10 À9 without transimpedance amplifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.