Background: The aim of this study was to compare and to validate different dose calculation algorithms for the use in radiation therapy of small lung lesions and to optimize the treatment planning using accurate dose calculation algorithms.
The 2D ionization chamber array I'mRT MatriXX (IBA, Schwarzenbruck, Germany) has been developed for absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT) for perpendicular beam incidence. The aim of this study is to evaluate the applicability of I'mRT MatriXX for oblique beam incidence and hybrid plan verification of IMRT with original gantry angles. For the assessment of angular dependence, open fields with gantry angles in steps of 10 degrees were calculated on a CT scan of I'mRT MatriXX. For hybrid plan verification, 17 clinical IMRT plans and one rotational plan were used. Calculations were performed with pencil beam (PB), collapsed cone (CC) and Monte Carlo (MC) methods, which had been previously validated. Measurements were conducted on an Elekta SynergyS linear accelerator. To assess the potential and limitations of the system, gamma evaluation was performed with different dose tolerances and distances to agreement. Hybrid plan verification passed the gamma test with 4% dose tolerance and 3 mm distance to agreement in all cases, in 82-88% of the cases for tolerances of 3%/3 mm, and in 59-76% of the cases if 3%/2 mm were used. Separate evaluation of the low dose and high dose regions showed that I'mRT MatriXX can be used for hybrid plan verification of IMRT plans within 3% dose tolerance and 3 mm distance to agreement with a relaxed dose tolerance of 4% in the low dose region outside the multileaf collimator (MLC).
The use of FFF mode allows reducing the EAR significantly when tVMAT is used as the treatment technique. When second cancer risk is a major concern, tVMAT FFF is considered the preferred treatment option in SIB irradiation of right-sided breast cancer.
BackgroundThe aim of the study was to compare the two irradiation modes with (FF) and without flattening filter (FFF) for three different treatment techniques for simultaneous integrated boost radiation therapy of patients with right sided breast cancer.MethodsAn Elekta Synergy linac with Agility collimating device is used to simulate the treatment of 10 patients. Six plans were generated in Monaco 5.0 for each patient treating the whole breast and a simultaneous integrated boost (SIB) volume: intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT) and a tangential arc VMAT (tVMAT), each with and without flattening filter. Plan quality was assessed considering target coverage, sparing of the contralateral breast, the lungs, the heart and the normal tissue. All plans were verified by a 2D-ionisation-chamber-array and delivery times were measured and compared. The Wilcoxon test was used for statistical analysis with a significance level of 0.05.ResultsSignificantly best target coverage and homogeneity was achieved using VMAT FFF with V95% = (98.7 ± 0.8) % and HI = (8.2 ± 0.9) % for the SIB and V95% = (98.3 ± 0.7) % for the PTV, whereas tVMAT showed significantly lowest doses to the contralateral organs at risk with a Dmean of (0.7 ± 0.1) Gy for the contralateral lung, (1.0 ± 0.2) Gy for the contralateral breast and (1.4 ± 0.2) Gy for the heart. All plans passed the gamma evaluation with a mean passing rate of (99.2 ± 0.8) %. Delivery times were significantly reduced for VMAT and tVMAT but increased for IMRT, when FFF was used. Lowest delivery times were observed for tVMAT FFF with (1:20 ± 0:07) min.ConclusionBalancing target coverage, OAR sparing and delivery time, VMAT FFF and tVMAT FFF are considered the preferable of the investigated treatment options in simultaneous integrated boost irradiation of right sided breast cancer for the combination of an Elekta Synergy linac with Agility and the treatment planning system Monaco 5.0.
Pediatric patients suffering from ependymoma are usually treated with cranial or craniospinal three‐dimensional (3D) conformal radiotherapy (3DCRT). Intensity‐modulated techniques spare dose to the surrounding tissue, but the risk for second malignancies may be increased due to the increase in low‐dose volume. The aim of this study is to investigate if the flattening filter free (FFF) mode allows reducing the risk for second malignancies compared to the mode with flattening filter (FF) for intensity‐modulated techniques and to 3DCRT. A reduction of the risk would be advantageous for treating pediatric ependymoma. 3DCRT was compared to intensity‐modulated radiation therapy (IMRT) and volumetric‐modulated arc therapy (VMAT) with and without flattening filter. Dose–volume histograms (DVHs) were compared to evaluate the plan quality and used to calculate the excess absolute risk (EAR) to develop second cancer in the brain. Dose verification was performed with a two‐dimensional (2D) ionization chamber array and the out‐of‐field dose was measured with an ionization chamber to determine the EAR in peripheral organs. Delivery times were measured. Both VMAT and IMRT achieved similar plan quality in terms of dose sparing in the OAR and higher PTV coverage as compared to 3DCRT. Peripheral dose in low‐dose region, which is proportional to the EAR in organs located in this region, for example, gonads, bladder, or bowel, could be significantly reduced using FFF. The lowest peripheral EAR and lowest delivery times were hereby achieved with VMATFFF. The EAR calculated based on DVH in the brain could not be reduced using FFF mode. VMATFFF improved the target coverage and homogeneity and kept the dose in the OAR similar compared to 3DCRT. In addition, delivery times were significantly reduced using VMATFFF. Therefore, for radiotherapy of ependymoma patients, VMATFFF may be considered advantageous for the combination of Elekta Synergy linac and Oncentra External Beam planning system used in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.