Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ‐MnO2 and control of H+ conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO2 system delivers a discharge capacity of 136.9 mAh g−1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries.
Porous structured silicon has been regarded as a promising candidate to overcome pulverization of silicon-based anodes. However, poor mechanical strength of these porous particles has limited their volumetric energy density towards practical applications. Here we design and synthesize hierarchical carbon-nanotube@silicon@carbon microspheres with both high porosity and extraordinary mechanical strength (>200 MPa) and a low apparent particle expansion of~40% upon full lithiation. The composite electrodes of carbon-nanotube@silicon@carbon-graphite with a practical loading (3 mAh cm −2) deliver~750 mAh g −1 specific capacity, <20% initial swelling at 100% state-of-charge, and~92% capacity retention over 500 cycles. Calendered electrodes achieve~980 mAh cm −3 volumetric capacity density and <50% end-of-life swell after 120 cycles. Full cells with LiNi 1/3 Mn 1/3 Co 1/3 O 2 cathodes demonstrate >92% capacity retention over 500 cycles. This work is a leap in silicon anode development and provides insights into the design of electrode materials for other batteries.
We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-δ (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 °C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.