Background On the Indian subcontinent, visceral leishmaniasis (VL) incidence is on track to reach elimination goals by 2020 in nearly all endemic districts. Although not included in official targets, previous data suggest post-kala-azar dermal leishmaniasis (PKDL) patients can act as an infection reservoir. Methods We conducted xenodiagnosis on 47 PKDL patients and 15 VL patients using laboratory-reared Phlebotomus argentipes. In direct xenodiagnosis, flies were allowed to feed on the patient’s skin for 15 minutes. For indirect xenodiagnosis, flies were fed through a membrane on the patient’s blood. Five days later, blood-fed flies were dissected and examined by microscopy and/or polymerase chain reaction (PCR). A 3-mm skin snip biopsy (PKDL) or venous blood (VL) was processed by quantitative PCR. Results Twenty-seven PKDL patients (57.4%) had positive results by direct and/or indirect xenodiagnosis. Direct was significantly more sensitive than indirect xenodiagnosis (55.3% vs 6.4%, P < .0001). Those with positive xenodiagnosis had median skin parasite loads >1 log10 unit higher than those with negative results (2.88 vs 1.66, P < .0001). In a multivariable model, parasite load, nodular lesions, and positive skin microscopy were significantly associated with positive xenodiagnosis. Blood parasite load was the strongest predictor for VL. Compared to VL, nodular PKDL was more likely and macular PKDL less likely to result in positive xenodiagnosis, but neither difference reached statistical significance. Conclusions Nodular and macular PKDL, and VL, can be infectious to sand flies. Active PKDL case detection and prompt treatment should be instituted and maintained as an integral part of VL control and elimination programs.
Highlights d Stunted children have distinct gut phage communities relative to non-stunted ones d In vitro, phages regulate bacteria isolated from children younger than 23 months d Non-stunted children harbor more temperate phages, irrespective of age d Bacteria in stunted children have more traits linked to human disease and metabolism
New biomarkers are needed for monitoring the effectiveness of treatment for visceral leishmaniasis (VL). They might also improve the detection of the asymptomatic population in Leishmania-endemic areas. This paper examines the IL-2, IFN-γ, IFN-γ-induced protein 10 (IP-10), and monokine-induced-by-IFN-γ (MIG) levels in whole blood—stimulated in vitro with soluble Leishmania antigen (SLA)—taken from asymptomatic individuals and patients treated for VL living in a post-outbreak (Leishmania infantum) area in Spain, and in an endemic (Leishmania donovani) area of Bangladesh. IP-10 was found to be an accurate global marker of asymptomatic subjects with positive cellular/humoral tests, while MIG was found to be a better marker of contact with L. donovani than IL-2 but no for those with L. infantum. Determining IP-10, MIG, and IFN-γ levels proved useful in monitoring the cellular immune response following treatment for active disease caused by L. infantum.
BackgroundPost-kala-azar dermal leishmaniasis (PKDL) is a sequel to visceral leishmaniasis (VL), which is found in VL-endemic countries including Bangladesh. Because of these enigmatic cases, the success of the National Kala-azar Elimination Program is under threat. To date, diagnostic methods for PKDL cases in endemic regions have been limited to clinical examination and rK39 test or microscopy, and a suitable and accurate alternative method is needed. In this study, we investigated the application of real-time polymerase chain reaction (PCR) as a potential method for diagnosis of PKDL in comparison with microscopy.MethodsNinety-one suspected macular PKDL cases from Mymensingh district, Bangladesh, were enrolled in the study after diagnosis by clinical examination and an rK39 strip test. All of them responded after completion of the treatment with miltefosine. During enrollment, a skin biopsy was done for each patient, and both microscopy and real-time PCR were performed for detection and quantification of Leishmania donovan body (LDB) and LD DNA, respectively.ResultsReal-time PCR detected 83 cases among all suspected PKDL patients, with an encouraging sensitivity of 91.2% (83.4%–96.1%), whereas microscopy showed 50.6% (39.9%–61.2%) sensitivity. Among all suspected PKDL cases, 42 cases were positive in both microscopy and qPCR, whereas 41 cases were detected as positive through qPCR only.ConclusionsThis study provides evidence that real-time PCR is a promising tool for diagnosis of PKDL in endemic regions. In addition to diagnosis, the quantitative ability of this method could be further exploited for after-treatment prognosis and cure assessment of PKDL cases.
Background Visceral leishmaniasis (VL) caused by dimorphic Leishmania species is a parasitic disease with high socioeconomic burden in endemic areas worldwide. Sustaining control of VL in terms of proper and prevailing immunity development is a global necessity amid unavailability of a prophylactic vaccine. Screening of experimental proteome of the human disease propagating form of Leishmania donovani (amastigote) can be more pragmatic for in silico mining of novel vaccine candidates. Methods By using an immunoinformatic approach, CD4+ and CD8+ T cell-specific epitopes from experimentally reported L. donovani proteins having secretory potential and increased abundance in amastigotes were screened. A chimera linked with a Toll-like receptor 4 (TLR4) peptide adjuvant was constructed and evaluated for physicochemical characteristics, binding interaction with TLR4 in simulated physiological condition and the trend of immune response following hypothetical immunization. Results Selected epitopes from physiologically important L. donovani proteins were found mostly conserved in L. infantum, covering theoretically more than 98% of the global population. The multi-epitope chimeric vaccine was predicted as stable, antigenic and non-allergenic. Structural analysis of vaccine-TLR4 receptor docked complex and its molecular dynamics simulation suggest sufficiently stable binding interface along with prospect of non-canonical receptor activation. Simulation dynamics of immune response following hypothetical immunization indicate active and memory B as well as CD4+ T cell generation potential, and likely chance of a more Th1 polarized response. Conclusions The methodological approach and results from this study could facilitate more informed screening and selection of candidate antigenic proteins for entry into vaccine production pipeline in future to control human VL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.