A green chemistry approach to nanoparticle synthesis is the exciting possibility opened up by the fungus Fusarium oxysporum. The fungus (shown in the flask on the left), when exposed to aqueous AuCl4− ions, reduces the metal ions; this leads to the extracellular formation of gold nanoparticles (shown in the flask on the right).
The biosynthesis of Q-state CdS nanoparticles by reaction of aqueous CdSO4 solution with the fungus, Fusarium oxysporum, is demonstrated. Nanoparticle formation proceeds by release of sulfate reductase enzymes by the fungus, conversion of sulfate ions to sulfide ions that subsequently react with aqueous Cd2+ ions to yield highly stable CdS nanoparticles. Elucidation of an enzymatic pathway using fungi opens up the exciting possibility of developing a rational, biosynthesis strategy for nanomaterials over a range of chemical compositions which is currently not possible.
The development of reliable, eco-friendly processes for the synthesis of nanoscale materials is an important aspect of nanotechnology. In this paper, we report on the use of an alkalotolerant actinomycete (Rhodococcus sp.) in the intracellular synthesis of gold nanoparticles of the dimension 5-15 nm. Electron microscopy analysis of thin sections of the gold actinomycete cells indicated that gold particles with good monodispersity were formed on the cell wall as well as on the cytospasmic membrane. The particles are more concentrated on the cytoplasmic membrane than on the cell wall, possibly due to reduction of the metal ions by enzymes present in the cell wall and on the cytoplasmic membrane. The metal ions were not toxic to the cells and the cells continued to multiply after biosynthesis of the gold nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.