Pseudomonas aeruginosa produces multiple virulence factors and causes different types of infections. Previous clinical studies identified P. aeruginosa isolates that lack individual virulence factors. However, the impact of losing several virulence factors simultaneously on the in vivo virulence of P. aeruginosa is not completely understood. The P. aeruginosa cell-to-cell communication system, or quorum sensing (QS), controls the production of several virulence factors. Animal studies using constructed QS mutants indicated that loss of the QS system severely impacts the virulence of P. aeruginosa. In this study, we tried to determine if deficiency within the QS system compromises the ability of P. aeruginosa to establish infections in humans. We have identified five QS-deficient strains through screening 200 isolates from patients with urinary tract, lower respiratory tract and wound infections. These strains lacked LasB and LasA activities and produced either no or very low levels of the autoinducers N-(3-oxododecanoyl) homoserine lactone and N-butyryl homoserine lactone. PCR analysis revealed that three isolates contained all four QS genes (lasI, lasR, rhlI and rhlR) while two isolates lacked both the lasR and rhlR genes. We also examined the five isolates for other virulence factors. The isolates produced variable levels of exotoxin A and, with one exception, were deficient in pyocyanin production. One isolate produced the type III secretion system (TTSS) effector proteins ExoS and ExoT, two isolates produced ExoT only and two isolates produced no TTSS proteins. The isolates produced weak to moderate biofilms on abiotic surfaces. Analysis of the patients' data revealed that two of the isolates represented a single strain that was isolated twice from the same patient within a 1 month interval. One QSdeficient clinical isolate (CI-1) lacked all tested virulence factors and produced a weak biofilm. These results suggest that naturally occurring QS-deficient strains of P. aeruginosa do occur and are capable of causing infections; and, that besides the known virulence factors, additional factors may contribute to the ability of certain strains such as CI-1 to establish an infection.
Age-related changes in the hepatic sinusoid, called pseudocapillarization, may contribute to the pathogenesis of dyslipidaemia. Caloric restriction (CR) is a powerful model for the study of aging because it extends lifespan. We assessed the effects of CR on the hepatic sinusoid to determine whether pseudocapillarization is preventable and hence a target for the prevention of age-related dyslipidemia. Livers from young (6 months) and old (24 months) CR and ad libitum fed (AL) F344 rats were examined using electron microscopy and immunohistochemistry. In old age, there was increased thickness of the liver sinusoidal endothelium and reduced endothelial fenestration porosity. In old CR rats, endothelial thickness was less and fenestration porosity was greater than in old AL rats. Immunohistochemistry showed that CR prevented age-related decrease in caveolin-1 expression and increase in peri-sinusoidal collagen IV staining, but did not alter the age-related increase of von Willebrand's factor. CR reduces age-related pseudocapillarization of the hepatic sinusoid and correlates with changes in caveolin-1 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.