Muscle-eye-brain disease (MEB) is an autosomal recessive disorder characterized by congenital muscular dystrophy, ocular abnormalities, and lissencephaly. Mammalian O-mannosyl glycosylation is a rare type of protein modification that is observed in a limited number of glycoproteins of brain, nerve, and skeletal muscle. Here we isolated a human cDNA for protein O-mannose beta-1,2-N-acetylglucosaminyltransferase (POMGnT1), which participates in O-mannosyl glycan synthesis. We also identified six independent mutations of the POMGnT1 gene in six patients with MEB. Expression of most frequent mutation revealed a great loss of the enzymatic activity. These findings suggest that interference in O-mannosyl glycosylation is a new pathomechanism for muscular dystrophy as well as neuronal migration disorder.
The limb girdle and congenital muscular dystrophies (LGMD and CMD) are characterized by skeletal muscle weakness and dystrophic muscle changes. The onset of symptoms in CMD is within the first few months of life, whereas in LGMD they can occur in late childhood, adolescence or adult life. We have recently demonstrated that the fukutin-related protein gene (FKRP) is mutated in a severe form of CMD (MDC1C), characterized by the inability to walk, leg muscle hypertrophy and a secondary deficiency of laminin alpha2 and alpha-dystroglycan. Both MDC1C and LGMD2I map to an identical region on chromosome 19q13.3. To investigate whether these are allelic disorders, we undertook mutation analysis of FKRP in 25 potential LGMD2I families, including some with a severe and early onset phenotype. Mutations were identified in individuals from 17 families. A variable reduction of alpha-dystroglycan expression was observed in the skeletal muscle biopsy of all individuals studied. In addition, several cases showed a deficiency of laminin alpha2 either by immunocytochemistry or western blotting. Unexpectedly, affected individuals from 15 families had an identical C826A (Leu276Ileu) mutation, including five that were homozygous for this change. Linkage analysis identified at least two possible haplotypes in linkage disequilibrium with this mutation. Patients with the C826A change had the clinically less severe LGMD2I phenotype, suggesting that this is a less disruptive FKRP mutation than those found in MDC1C. The spectrum of LGMD2I phenotypes ranged from infants with an early presentation and a Duchenne-like disease course including cardiomyopathy, to milder phenotypes compatible with a favourable long-term outcome.
SIL1 (also called BAP) acts as a nucleotide exchange factor for the Hsp70 chaperone BiP (also called GRP78), which is a key regulator of the main functions of the endoplasmic reticulum. We found nine distinct mutations that would disrupt the SIL1 protein in individuals with Marinesco-Sjögren syndrome, an autosomal recessive cerebellar ataxia complicated by cataracts, developmental delay and myopathy. Identification of SIL1 mutations implicates Marinesco-Sjögren syndrome as a disease of endoplasmic reticulum dysfunction and suggests a role for this organelle in multisystem disorders.
We describe 22 patients with mutations in the fukutin-related protein (FKPR) gene. Four patients had congenital muscular dystrophy (MDC1C), with presentation at birth, severe weakness and inability to stand unsupported. The other 18 had limb girdle muscular dystrophy (LGMD2I). Eleven showed a Duchenne-like course with loss of ambulation in the early teens while 7 had a milder phenotype. Muscle biopsy invariably showed abnormal expression of a-dystroglycan. MDC1C patients either carried 2 missense or 1 missense and 1 nonsense mutations. Patients with LGMD2I shared a common mutation (C826A,Leu276Ileu) and their phenotypic severity was correlated with the second allelic mutation.
Neuromuscular junctions (NMJs) are synapses that transmit impulses from motor neurons to skeletal muscle fibers leading to muscle contraction. Study of hereditary disorders of neuromuscular transmission, termed congenital myasthenic syndromes (CMS), has helped elucidate fundamental processes influencing development and function of the nerve-muscle synapse. Using genetic linkage, we find 18 different biallelic mutations in the gene encoding glutamine-fructose-6-phosphate transaminase 1 (GFPT1) in 13 unrelated families with an autosomal recessive CMS. Consistent with these data, downregulation of the GFPT1 ortholog gfpt1 in zebrafish embryos altered muscle fiber morphology and impaired neuromuscular junction development. GFPT1 is the key enzyme of the hexosamine pathway yielding the amino sugar UDP-N-acetylglucosamine, an essential substrate for protein glycosylation. Our findings provide further impetus to study the glycobiology of NMJ and synapses in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.