The Helicobacter pylori (Hp) type IV secretion system (T4SS) forms needle-like pili, whose binding to the integrin-β receptor results in injection of the CagA oncoprotein. However, the apical surface of epithelial cells is exposed to Hp, whereas integrins are basolateral receptors. Hence, the mechanism of CagA delivery into polarized gastric epithelial cells remains enigmatic. Here, we demonstrate that T4SS pilus formation during infection of polarized cells occurs predominantly at basolateral membranes, and not at apical sites. Hp accomplishes this by secreting another bacterial protein, the serine protease HtrA, which opens cell-to-cell junctions through cleaving epithelial junctional proteins including occludin, claudin-8, and E-cadherin. Using a genetic system expressing a peptide inhibitor, we demonstrate that HtrA activity is necessary for paracellular transmigration of Hp across polarized cell monolayers to reach basolateral membranes and inject CagA. The contribution of this unique signaling cascade to Hp pathogenesis is discussed.
ADAM10 is a disintegrin metalloproteinase that processes amyloid precursor protein and ErbB ligands and is involved in the shedding of many type I and type II single membrane-spanning proteins. Like tumor necrosis factor-␣-converting enzyme (TACE or ADAM17), ADAM10 is expressed as a zymogen, and removal of the prodomain results in its activation. Here we report that the recombinant mouse ADAM10 prodomain, purified from Escherichia coli, is a potent competitive inhibitor of the human ADAM10 catalytic/disintegrin domain, with a K i of 48 nM. Moreover, the mouse ADAM10 prodomain is a selective inhibitor as it only weakly inhibits other ADAM family proteinases in the micromolar range and does not inhibit members of the matrix metalloproteinase family under similar conditions. Mouse prodomains of TACE and ADAM8 do not inhibit their respective enzymes, indicating that ADAM10 inhibition by its prodomain is unique. In cell-based assays we show that the ADAM10 prodomain inhibits betacellulin shedding, demonstrating that it could be of potential use as a therapeutic agent to treat cancer.
Summary Obesity and type-2 diabetes are associated with tissue-inflammation and metabolic defects in fat depots. Foxp3+regulatory T(Treg) cells mediate T-cell tolerance, thereby controlling tissue inflammation. However, the molecular underpinnings how environmental stimuli interlink T-cell tolerance with adipose tissue function remain largely unknown. Here, we report that cold exposure or beta3-adrenergic receptor (ADRB3) stimulation induces T-cell tolerance in vitro and in murine and humanized models. Tolerance induction was verified by CD4+T-cell-proteomes revealing higher protein expression of Foxp3 regulatory networks. Specifically, Ragulator-interacting protein C17orf59, which limits mTORC1 activity, was upregulated by either ADRB3-stimulation or cold-exposure, and therefore might enhance Treg induction. By loss and gain-of-function studies, including Treg depletion and transfers in vivo, we demonstrated that a T-cell-specific Stat6/Pten axis links cold-exposure or ADRB3 stimulation with Foxp3+Treg induction and adipose tissue function. Our findings open new avenues in understanding tissue-specific T-cell tolerance and the design of precision concepts toward personalized immune-metabolic health.
Papillon-Lefèvre syndrome (PLS) is characterized by nonfunctional neutrophil serine proteases (NSPs) and fulminant periodontal inflammation of unknown cause. Here we investigated neutrophil extracellular trap (NET)-associated aggregation and cytokine/chemokine-release/degradation by normal and NSP-deficient human and mouse granulocytes. Stimulated with solid or soluble NET inducers, normal neutrophils formed aggregates and both released and degraded cytokines/chemokines. With increasing cell density, proteolytic degradation outweighed release. Maximum output of cytokines/chemokines occurred mostly at densities between 2 × 10 and 4 × 10 neutrophils/cm. Assessment of neutrophil density in vivo showed that these concentrations are surpassed during inflammation. Association with aggregated NETs conferred protection of neutrophil elastase against α1-antitrypsin. In contrast, eosinophils did not influence cytokine/chemokine concentrations. The proteolytic degradation of inflammatory mediators seen in NETs was abrogated in Papillon-Lefèvre syndrome (PLS) neutrophils. In summary, neutrophil-driven proteolysis of inflammatory mediators works as a built-in safeguard for inflammation. The absence of this negative feedback mechanism might be responsible for the nonresolving periodontitis seen in PLS.-Hahn, J., Schauer, C., Czegley, C., Kling, L., Petru, L., Schmid, B., Weidner, D., Reinwald, C., Biermann, M. H. C., Blunder, S., Ernst, J., Lesner, A., Bäuerle, T., Palmisano, R., Christiansen, S., Herrmann, M., Bozec, A., Gruber, R., Schett, G., Hoffmann, M. H. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases.
Mitochondrial membrane potential is more negative in cancer cells than in normal cells, allowing cancer targeting by delocalized lipophilic cations (DLCs). However, as the difference is rather small, these drugs affect also normal cells. Now a concept of pro-DLCs is proposed based on an N-alkylaminoferrocene structure. These prodrugs are activated by the reaction with reactive oxygen species (ROS) forming ferrocenium-based DLCs. Since ROS are overproduced in cancer, the high-efficiency cancer-cell-specific targeting of mitochondria could be achieved as demonstrated by fluorescence microscopy in combination with two fluorogenic pro-DLCs in vitro and in vivo. We prepared a conjugate of another pro-DLC with a clinically approved drug carboplatin and confirmed that its accumulation in mitochondria was higher than that of the free drug. This was reflected in the substantially higher anticancer effect of the conjugate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.