In this study, the role of the recently identified class of phytohormones, strigolactones, in shaping root architecture was addressed. Primary root lengths of strigolactone-deficient and -insensitive Arabidopsis (Arabidopsis thaliana) plants were shorter than those of wild-type plants. This was accompanied by a reduction in meristem cell number, which could be rescued by application of the synthetic strigolactone analog GR24 in all genotypes except in the strigolactone-insensitive mutant. Upon GR24 treatment, cells in the transition zone showed a gradual increase in cell length, resulting in a vague transition point and an increase in transition zone size. PIN1/3/7-green fluorescent protein intensities in provascular tissue of the primary root tip were decreased, whereas PIN3-green fluorescent protein intensity in the columella was not affected. During phosphatesufficient conditions, GR24 application to the roots suppressed lateral root primordial development and lateral root forming potential, leading to a reduction in lateral root density. Moreover, auxin levels in leaf tissue were reduced. When auxin levels were increased by exogenous application of naphthylacetic acid, GR24 application had a stimulatory effect on lateral root development instead. Similarly, under phosphate-limiting conditions, endogenous strigolactones present in wild-type plants stimulated a more rapid outgrowth of lateral root primordia when compared with strigolactone-deficient mutants. These results suggest that strigolactones are able to modulate local auxin levels and that the net result of strigolactone action is dependent on the auxin status of the plant. We postulate that the tightly balanced auxin-strigolactone interaction is the basis for the mechanism of the regulation of the plants' root-to-shoot ratio.Strigolactones, exuded from plants, have been known for a long time to act as germination stimulants for seeds of root parasitic plants such as Orobanche and Striga spp. (for review, see Bouwmeester et al., 2003Bouwmeester et al., , 2007. As root parasitic plants consume a large proportion of the host plants' solutes, they cause wilting and early plant death. Initially, the discovery that strigolactones are also involved in the symbiotic interaction with arbuscular mycorrhizal fungi (Akiyama et al., 2005) was believed to provide an explanation for why the host plants' capacity to produce strigolactones was not lost during evolution. Because arbuscular mycorrhizal fungi are potent providers of nutrients such as phosphate (Pi) and nitrogen to their host, the observation that Pi starvation induced strigolactone biosynthesis in host plants' roots was not surprising (Yoneyama et al., 2007;Ló pez-Ráez et al., 2008). The recent discovery that strigolactones, or closely related compounds, also act as phytohormones inside the host plants and are involved in the inhibition of axillary bud outgrowth (Gomez-Roldan et al., 2008;Umehara et al., 2008) is an additional explanation why plants continue to produce these fatal ger-
Multicellular organisms activate immunity upon recognition of pathogen-associated molecular patterns (PAMPs). Chitin is the major component of fungal cell walls, and chitin oligosaccharides act as PAMPs in plant and mammalian cells. Microbial pathogens deliver effector proteins to suppress PAMP-triggered host immunity and to establish infection. Here, we show that the LysM domain-containing effector protein Ecp6 of the fungal plant pathogen Cladosporium fulvum mediates virulence through perturbation of chitin-triggered host immunity. During infection, Ecp6 sequesters chitin oligosaccharides that are released from the cell walls of invading hyphae to prevent elicitation of host immunity. This may represent a common strategy of host immune suppression by fungal pathogens, because LysM effectors are widely conserved in the fungal kingdom.
Strigolactones were originally identified as stimulators of the germination of root-parasitic weeds 1 that pose a serious threat to resource-limited agriculture 2 . They are mostly exuded from roots and function as signalling compounds in the initiation of arbuscular mycorrhizae 3 , which are plant-fungus symbionts with a global effect on carbon and phosphate cycling 4 . Recently, strigolactones were established to be phytohormones that regulate plant shoot architecture by inhibiting the outgrowth of axillary buds 5,6 . Despite their importance, it is not known how strigolactones are transported. ATP-binding cassette (ABC) transporters, however, are known to have functions in phytohormone translocation [7][8][9] . Here we show that the Petunia hybrida ABC transporter PDR1 has a key role in regulating the development of arbuscular mycorrhizae and axillary branches, by functioning as a cellular strigolactone exporter. P. hybrida pdr1 mutants are defective in strigolactone exudation from their roots, resulting in reduced symbiotic interactions. Above ground, pdr1 mutants have an enhanced branching phenotype, which is indicative of impaired strigolactone allocation. Overexpression of Petunia axillaris PDR1 in Arabidopsis thaliana results in increased tolerance to high concentrations of a synthetic strigolactone, consistent with increased export of strigolactones from the roots. PDR1 is the first known component in strigolactone transport, providing new opportunities for investigating and manipulating strigolactone-dependent processes.Strigolactones are a new class of carotenoid-derived 10 phytohormone in land plants. In addition to their role in shoot branching, strigolactones are exuded into the rhizosphere under phosphorus-limiting conditions 5 and act as growth stimulants of arbuscular mycorrhizal fungi 3 . To identify efflux carriers of arbuscular-mycorrhiza-promoting factors such as strigolactones, we used a degenerate primer approach ( Supplementary Fig. 2a) to isolate full-size PDR-type transporters (also known as ABC subtype G (ABCG) transporters) of P. hybrida that are abundant in phosphate-starved or mycorrhizal roots. The rationale behind the focus on these transporters, of which there are 15 in Arabidopsis 11 , 23 in Oryza sativa (rice) 11 and 23 putative factors in Solanum lycopersicum (tomato) ( Supplementary Fig. 3a), was that they are plasma membrane proteins often found in roots 12 , they are implicated in below-ground plantmicrobe interactions 13,14 , and they have affinities for compounds that are structurally related to strigolactones 8,9,15 . Of six primary candidates, only P. hybrida PDR1 had increased expression in roots that were subjected to either phosphate starvation (Fig. 1a) or colonization by the arbuscular mycorrhizal fungus Glomus intraradices (Fig. 1b). Furthermore, PDR1 transcript levels increased in response to treatment with the synthetic strigolactone analogue GR24 or the auxin analogue 1-naphthaleneacetic acid (NAA) (Fig. 1c). Auxin has been shown to upregulate strigolactone-bi...
The biosynthesis of the recently identified novel class of plant hormones, strigolactones, is up-regulated upon phosphate deficiency in many plant species. It is generally accepted that the evolutionary origin of strigolactone up-regulation is their function as a rhizosphere signal that stimulates hyphal branching of arbuscular mycorrhizal fungi. In this work, we demonstrate that this induction is conserved in Arabidopsis (Arabidopsis thaliana), although Arabidopsis is not a host for arbuscular mycorrhizal fungi. We demonstrate that the increase in strigolactone production contributes to the changes in shoot architecture observed in response to phosphate deficiency. Using high-performance liquid chromatography, column chromatography, and multiple reaction monitoring-liquid chromatography-tandem mass spectrometry analysis, we identified two strigolactones (orobanchol and orobanchyl acetate) in Arabidopsis and have evidence of the presence of a third (5-deoxystrigol). We show that at least one of them (orobanchol) is strongly reduced in the putative strigolactone biosynthetic mutants more axillary growth1 (max1) and max4 but not in the signal transduction mutant max2. Orobanchol was also detected in xylem sap and up-regulated under phosphate deficiency, which is consistent with the idea that root-derived strigolactones are transported to the shoot, where they regulate branching. Moreover, two additional putative strigolactone-like compounds were detected in xylem sap, one of which was not detected in root exudates. Together, these results show that xylem-transported strigolactones contribute to the regulation of shoot architectural response to phosphate-limiting conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.