The High Resolution Stereo Camera (HRSC) onboard the Mars Express mission is the first photogrammetric stereo sensor system employed for planetary remote sensing. The derivation of high-quality digital terrain models is subject to a variety of parameters, some of which show a significant variability between and also within individual datasets. Therefore, adaptive processing techniques and the use of efficient quality parameters for controlling automated processing are considered to be key requirements for DTM generation. We present the general procedure for the derivation of HRSC high-resolution DTM, representing the core element of the systematic derivation of high-level data products by the Mars Express HRSC experiment team. We also analyze test series applying specific processing variations, including a new method for signal adaptive image preprocessing. The results are assessed based on internal quality measures and compared to external terrain data. Sub-pixel scale 3D point accuracy of better than 10 m and a DTM spatial resolution of up to 50 m can be achieved for large parts of the surface of Mars within a reasonable effort. This confirms the potentials of the applied along-track multiple stereo imaging principle and allows for a considerable improvement in our knowledge of the topography of Mars.
This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author's institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright
The High Resolution Stereo Camera (HRSC) on the European spacecraft Mars Express is the first camera on a planetary mission especially designed for photogrammetric and cartographic purposes. Since January 2004 the camera has been taking image data from the Martian surface, characterized by high-resolution, stereo capability and color. These data provide an enormous potential for the generation of 3D surface models, color orthoimages, topographic and thematic maps, and additional products. The image data acquired undergo calibration and systematic processing to orthoimages and 3D data products. Within the international HRSC Science Team Neukum, and the HRSC CoI-Team.the members of the Photogrammetric/Cartographic Working Group are concerned with further refinements in order to achieve highest quality data products. These activities comprise improvements of the exterior orientation of the camera, various approaches to enhance DTM quality, and the generation of maps in the standard scale of 1:200 000 and larger scales as well. The paper reports on these activities and the results achieved so far.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSINGO c t o b e r 2 0 0 5 1153
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.