The tumor microenvironment of colorectal carcinoma is a complex community of genomically altered cancer cells, nonneoplastic cells, and a diverse collection of microorganisms. Each of these components may contribute to carcinogenesis; however, the role of the microbiota is the least well understood. We have characterized the composition of the microbiota in colorectal carcinoma using whole genome sequences from nine tumor/normal pairs. Fusobacterium sequences were enriched in carcinomas, confirmed by quantitative PCR and 16S rDNA sequence analysis of 95 carcinoma/normal DNA pairs, while the Bacteroidetes and Firmicutes phyla were depleted in tumors. Fusobacteria were also visualized within colorectal tumors using FISH. These findings reveal alterations in the colorectal cancer microbiota; however, the precise role of Fusobacteria in colorectal carcinoma pathogenesis requires further investigation.
Lineage survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development.1,2 Here we show that a peak of genomic amplification on chromosome 3q26.33, found in squamous cell carcinomas (SCCs) of the lung and esophagus, contains the transcription factor gene SOX2—which is mutated in hereditary human esophageal malformations3 and necessary for normal esophageal squamous development4, promotes differentiation and proliferation of basal tracheal cells5 and co-operates in induction of pluripotent stem cells.6,7,8 SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These observations identify SOX2 as a novel lineage survival oncogene in lung and esophageal SCC.
Aberrant activation of the canonical Wnt/β-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival. Although dysregulated β-catenin activity drives colon tumorigenesis, additional genetic perturbations are required to elaborate fully malignant disease. To identify genes that both modulate β-catenin activity and are essential for colon cancer cell proliferation, we conducted two loss-of-function screens in human colon cancer cells and compared genes identified in these screens with an analysis of copy-number alterations in colon cancer specimens. One of these genes, CDK8, which encodes a member of the mediator complex, is located at 13q12.13, a region of recurrent copy number gain in a substantial fraction of colon cancers. Suppression of CDK8 expression inhibited proliferation in colon cancer cells characterized by high levels of CDK8 and β-catenin hyperactivity. CDK8 kinase activity was necessary for β-catenin driven transformation and expression of several β-catenin transcriptional targets. Together these observations suggest that therapeutic interventions targeting CDK8 may confer clinical benefit in β-catenin-driven malignancies.Correspondence and Requests for materials should be addressed to W.C.H. (Email: william_hahn@dfci.harvard.edu).. The Wnt/β-catenin pathway is implicated in over 90% of colon cancers and in a fraction of other human malignancies. Loss of the tumor suppressor APC or activating CTNNB1 (β-catenin) mutations results in constitutive activity of the β-catenin-T cell factor (TCF) transcriptional complex, which drives adenoma formation 1,2 . Although mutations in TP53 or K-RAS cooperate with dysregulated β-catenin signaling to program a fully malignant phenotype 3 , these mutations are found in less than half of β-catenin-driven colon cancers 4 . NIH Public AccessTo identify oncogenes that modulate β-catenin-dependent transcription and regulate colon cancer cell proliferation, we conducted two RNAi-based loss-of-function screens. We engineered DLD1 colon cancer cells, which harbor APC deletions and depend on β-catenin for proliferation 5 , to stably express "TOPFLASH" β-catenin-luciferase and "FOPFLASH" mutant-Renilla reporter constructs 6,7 (DLD1 Rep ). Suppression of β-catenin expression in DLD1 Rep cells by three β-catenin-specific short hairpin RNAs (shRNA) markedly reduced the TOPFLASH/FOPFLASH ratio (Fig. 1a), confirming that reporter activity requires β-catenin expression. We then screened DLD1 Rep cells with a shRNA library containing 4849 shRNAs that target 1000 genes, including 95% of the human kinome 6 . We found 34 genes whose expression was necessary for β-catenin activity, including two known β-catenin regulators, CSNK1G3 8 and CSNK1E 9 ( Fig. 1b and Supplementary Table 1).In parallel, we performed an arrayed, kinase-enriched shRNA screen in another β-catenindependent colon cancer cell line, HCT116, to identify genes essential for cancer cell proliferation. We identified 166 candidate genes necessary for proliferatio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.