Objective To evaluate the effect of coenzyme Q10 treatments in male infertility, specifically in these parameters: live birth and pregnancy rates, CoQ10 seminal concentration, sperm concentration, and sperm motility. Materials and methods Systematic review and meta-analysis in male infertility patients with CoQ10 oral treatments. Three trials were included: 149 males in CoQ10 group and 147 males in placebo group. Results None of the included trials provided any data regarding live births. The results of this meta-analysis show that supplementing infertile men with CoQ10 does not increase pregnancy rates. The analysis showed, among patients receiving CoQ10 treatment, a statistically significant increase in: CoQ10 seminal concentration (RR 49.55, 95 % CI 46.44 to 52.66, I 2 =17 %), sperm concentration (RR 5.33, 95 % CI 4.18 to 6.47, I 2 =58 %), and sperm motility (RR 4.50, 95 % CI 3.92 to 5.08, I 2 =0 %)Conclusion There is no evidence in the literature that CoQ10 increases either live birth or pregnancy rates, but there is a global improvement in sperm parameters. Adequately powered, robust trials of individual and combination antioxidant therapies are required to guide clinical practice.
Single-nucleotide polymorphisms (SNPs) in regulatory regions of candidate genes may determine variability in bone mineral density (BMD) because they may be responsible for differences in levels of a gene product in response to external signals. Under this hypothesis, we scanned an 800-base pair (bp) region within the COL1A1 promoter, known to harbor cis elements important for in vivo expression, and we found two new polymorphisms: ؊1663indelT and ؊1997 G/T. The G to T transversion at ؊1997 was associated with lumbar spine BMD (p ؍ 0.015) when tested in a cohort of 256 postmenopausal women after adjusting by age, body weight, and years since menopause; a lower degree of association was detected also for femoral neck BMD in a subgroup of 146 women in univariate analysis and after adjusting by age (p ؍ 0.044). The polymorphism ؊1663indelT, which corresponds to a deletion of a T in a tract of eight T residues (؊1670 to ؊1663), did not show significant association with BMD. Interestingly, ؊1663indelT is in strong linkage disequilibrium (LD) with the previously described Sp1 polymorphism of intron 1, which in this study did not show association with BMD either. Significant interaction between ؊1997 G/T and ؊1663indelT (p ؍ 0.019), and between ؊1997 G/T and Sp1 (p ؍ 0.045) was observed also. Individuals heterozygous for the three polymorphisms showed the highest mean BMD value. Gel retardation assays showed that oligonucleotides containing either the ؊1663 or the ؊1997 polymorphic sites specifically bind primary osteoblast nuclear proteins. We named these binding sites as PCOL1 and PCOL2, respectively. In summary, this study describes two new SNPs in the COL1A1 promoter, which may affect bone mass determination. (J Bone Miner Res 2002;17:384 -393)
Endometrial cancer (EC) is the most frequent of the invasive tumors of the female genital tract. Although usually detected in its initial stages, a 20% of the patients present with advanced disease. To date, no characterized molecular marker has been validated for the diagnosis of EC. In addition, new methods for prognosis and classification of EC are needed to combat this deadly disease. We thus aimed to identify new molecular markers of EC and to evaluate their validity on endometrial aspirates. Gene expression screening on 52 carcinoma samples and series of real‐time quantitative PCR validation on 19 paired carcinomas and normal tissue samples and on 50 carcinoma and noncarcinoma uterine aspirates were performed to identify and validate potential biomarkers of EC. Candidate markers were further confirmed at the protein level by immunohistochemistry and Western blot. We identified ACAA1, AP1M2, CGN, DDR1, EPS8L2, FASTKD1, GMIP, IKBKE, P2RX4, P4HB, PHKG2, PPFIBP2, PPP1R16A, RASSF7, RNF183, SIRT6, TJP3, EFEMP2, SOCS2 and DCN as differentially expressed in ECs. Furthermore, the differential expression of these biomarkers in primary endometrial tumors is correlated to their expression level in corresponding uterine fluid samples. Finally, these biomarkers significantly identified EC with area under the receiver‐operating‐characteristic values ranging from 0.74 to 0.95 in uterine aspirates. Interestingly, analogous values were found among initial stages. We present the discovery of molecular biomarkers of EC and describe their utility in uterine aspirates. These findings represent the basis for the development of a highly sensitive and specific minimally invasive method for screening ECs.
To clarify the mechanism of the stimulatory effect of statins on bone formation, we have assessed the effect of simvastatin and atorvastatin on osteoblast activity by analysing cell proliferation, as well as collagen, osteocalcin, and bone morphogenetic protein-2 (BMP2) gene expression in primary human osteoblast (hOB) and MG-63 cell line cultures. Explants of bone from patients without any metabolic disease under orthopedic hip procedures were used to obtain hOB. Cell cultures were established, synchronized, and different concentrations of simvastatin or atorvastatin were added (10(-9) M, 10(-8) M, 10(-7) M, 10(-6) M) during the experiment. Cell proliferation was analyzed after 24 h. Collagen polypeptide alpha1 type 1 (COL1A1) gene expression, osteocalcin, and BMP2 expression levels were quantified by real-time PCR after 24 h incubation with statins. There was a statistically significant decrease in cell proliferation related to simvastatin or atorvastatin addition at all concentrations in primary hOB compared with those not treated. A significant increase in COL1A1, osteocalcin, and BMP2 gene expression was detected when hOB cultures were treated with simvastatin or atorvastatin at different concentrations. Similar but less significant effects were found on MG-63 cells. After statin treatment we observed both an arrest of proliferation in hOB cells and an increase in collagen, osteocalcin, and BMP2 gene expression, consistent with a stimulatory effect towards mature osteoblast differentiation. These findings support the bone-forming effect of statins, probably through the BMP2 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.