Circulating tumor cell (CTC) enumeration has emerged as a powerful biomarker for the assessment of prognosis and the response to treatment in metastatic breast cancer (MBC). Moreover, clinical evidences show that CTC-cluster counts add prognostic information to CTC enumeration, however, their significance is not well understood, and more clinical evidences are needed. We aim to evaluate the prognostic value of longitudinally collected single CTCs and CTC-clusters in a heterogeneous real-world cohort of 54 MBC patients. Blood samples were longitudinally collected at baseline and follow up. CTC and CTC-cluster enumeration was performed using the CellSearch® system. Associations with progression-free survival (PFS) and overall survival (OS) were evaluated using Cox proportional hazards modelling. Elevated CTC counts and CTC-clusters at baseline were significantly associated with a shorter survival time. In joint analysis, patients with high CTC counts and CTC-cluster at baseline were at a higher risk of progression and death, and longitudinal analysis showed that patients with CTC-clusters had significantly shorter survival compared to patients without clusters. Moreover, patients with CTC-cluster of a larger size were at a higher risk of death. A longitudinal analysis of a real-world cohort of MBC patients indicates that CTC-clusters analysis provides additional prognostic value to single CTC enumeration, and that CTC-cluster size correlates with patient outcome.
The clinical presentation, similar to Milroy disease, indicates an overlapping of the external phenotype of both diseases, suggesting that genetic analysis of VEGFC would be useful in diagnosing patients that present with Milroy features but have no mutation in VEGFR-3. Establishing a well-defined genetic pattern would help with differential diagnosis.
Immune checkpoint inhibitors (ICIs), such as pembrolizumab, are revolutionizing therapeutic strategies for different cancer types, including non-small cell lung cancer (NSCLC). However, only a subset of patients benefits from this therapy, and new biomarkers are needed to select better candidates. In this study, we explored the value of liquid biopsy analyses, including circulating free DNA (cfDNA) and circulating tumour cells (CTCs), as a prognostic or predictive tool to guide pembrolizumab therapy. For this purpose, a total of 109 blood samples were collected from 50 patients with advanced NSCLC prior to treatment onset and at 6 and 12 weeks after the initiation of pembrolizumab. Plasma cfDNA was measured using hTERT quantitative PCR assay.The CTC levels at baseline were also analysed using two enrichment technologies (CellSearch ® and Parsortix systems) to evaluate the efficacy of both approaches at detecting the presence of programmed cell death ligand 1 (PD-L1) on CTCs. Notably, patients with high baseline hTERT cfDNA levels had significantly shorter progression-free survival (PFS) and overall survival (OS) than those with low baseline levels. Moreover, patients with unfavourable changes in the hTERT cfDNA levels from baseline to 12 weeks showed a higher risk of disease progression.Additionally, patients in whom CTCs were detected using the CellSearch ® system had significantly shorter PFS and OS than patients who had no CTCs. Finally, multivariate regression analyses confirmed the value of the combination of CTCs and cfDNA levels as an early independent predictor of disease progression, identifying a subgroup of patients who were negative for CTCs and presented low levels of cfDNA who particularly benefited from the treatment.
Traditionally, studies to address the characterization of mechanisms promoting tumor aggressiveness and progression have been focused only on primary tumor analyses, which could provide relevant information but have limitations to really characterize the more aggressive tumor population. To overcome these limitations, circulating tumor cells (CTCs) represent a noninvasive and valuable tool for real-time profiling of disseminated tumor cells. Therefore, the aim of the present study was to explore the value of CTC enumeration and characterization to identify markers associated with the outcome and the aggressiveness of triple-negative breast cancer (TNBC). For that aim, the CTC population from 32 patients diagnosed with TNBC was isolated and characterized. This population showed important cell plasticity in terms of expression of epithelia/mesenchymal and stemness markers, suggesting the relevance of epithelial to mesenchymal transition (EMT) intermediate phenotypes for efficient tumor dissemination. Importantly, the CTC signature demonstrated prognostic value to predict the patients’ outcome and pointed to a relevant role of tissue inhibitor of metalloproteinases 1 (TIMP1) and androgen receptor (AR) for TNBC biology. Furthermore, we also analyzed the usefulness of the AR and TIMP1 blockade to target TNBC proliferation and dissemination using in vitro and in vivo zebra fish and mouse models. Overall, the molecular characterization of CTCs from advanced TNBC patients identifies highly specific biomarkers with potential applicability as noninvasive prognostic markers and reinforced the value of TIMP1 and AR as potential therapeutic targets to tackle the most aggressive breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.