Among current-generation computer-based electrocardiographs, clinically small but statistically significant differences exist between ECG interval measurements by individual algorithms. Measurement differences between algorithms for QRS duration and for QT interval are larger in long QT interval subjects than in normal subjects. Comparisons of population study norms should be aware of small systematic differences in interval measurements due to different algorithm methodologies, within-individual interval measurement comparisons should use comparable methods, and further attempts to harmonize interval measurement methodologies are warranted.
This study presents a 2-stage heartbeat classifier of supraventricular (SVB) and ventricular (VB) beats. Stage 1 makes computationally-efficient classification of SVB-beats, using simple correlation threshold criterion for finding close match with a predominant normal (reference) beat template. The non-matched beats are next subjected to measurement of 20 basic features, tracking the beat and reference template morphology and RR-variability for subsequent refined classification in SVB or VB-class by Stage 2. Four linear classifiers are compared: cluster, fuzzy, linear discriminant analysis (LDA) and classification tree (CT), all subjected to iterative training for selection of the optimal feature space among extended 210-sized set, embodying interactive second-order effects between 20 independent features. The optimization process minimizes at equal weight the false positives in SVB-class and false negatives in VB-class. The training with European ST-T, AHA, MIT-BIH Supraventricular Arrhythmia databases found the best performance settings of all classification models: Cluster (30 features), Fuzzy (72 features), LDA (142 coefficients), CT (221 decision nodes) with top-3 best scored features: normalized current RR-interval, higher/lower frequency content ratio, beat-to-template correlation. Unbiased test-validation with MIT-BIH Arrhythmia database rates the classifiers in descending order of their specificity for SVB-class: CT (99.9%), LDA (99.6%), Cluster (99.5%), Fuzzy (99.4%); sensitivity for ventricular ectopic beats as part from VB-class (commonly reported in published beat-classification studies): CT (96.7%), Fuzzy (94.4%), LDA (94.2%), Cluster (92.4%); positive predictivity: CT (99.2%), Cluster (93.6%), LDA (93.0%), Fuzzy (92.4%). CT has superior accuracy by 0.3–6.8% points, with the advantage for easy model complexity configuration by pruning the tree consisted of easy interpretable ‘if-then’ rules.
False Intensive Care Unit (ICU) alarms induce stress in both patients and clinical staff and decrease the quality of care, thus significantly increasing both the hospital recovery time and re-hospitalization rates. Therefore, PhysioNet/CinC Challenge 2015 encourages the development of algorithms for the analysis of bedside monitor data for robust detection of life-threatening arrhythmias. We participated in the Challenge with: (i) a closed source implementation of Arrhythmia Detection Library (ADLib, Schiller AG), including modules for lead quality monitoring, heartbeat detection, heartbeat classification and ventricular fibrillation detection; (ii) an open source Pulse Wave Analysis Module for verification of the hemodynamic status based on arterial blood pressure and photo plethysmogram signals; (iii) an open source Alarm Decision Module for final alarm rejection/validation.Our best scored entry in the real-time event is: score 79.41%, with 93%/83% true positive/negative rates. The average/max running time is 12.5/29.5% of quota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.