Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of more than 3300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, hepatocyte growth factor, interleukin-8, and granulocyte colony-stimulating factor, which were the strongest predictors of critical illness. Evidence of neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, these data suggest a central role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular markers that distinguish patients at risk of future clinical decompensation.
Despite over 30 million infected and 800,000 deaths, the pathophysiological factors that determine the wide spectrum of clinical outcomes in COVID-19 remain inadequately defined. Importantly, patients with underlying cardiovascular disease have been found to have worse clinical outcomes (1), and autopsy findings of endotheliopathy in COVID-19 have accumulated (2). Nonetheless, circulating markers of endothelial or vascular injury associated with disease severity and mortality have not been reliably established. To address this limitation and better understand COVID-19 pathogenesis, we report plasma profiling of factors related to the vascular system from patients admitted to our Hospital with confirmed COVID-19 diagnosis, which revealed significant increases in markers of angiogenesis and endotheliopathy in hospitalized patients.
Highlights d Loss of METTL3 inhibits proliferation and differentiation of hematopoietic stem cells d Depletion of m 6 A results in aberrant dsRNA formation of long m 6 A-modified transcripts d Loss of METTL3 induces deleterious innate immune responses in hematopoiesis d Mavs and Rnasel depletion partially rescue defects in Vav-Cre + -Mettl3 fl/
Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of over 3,300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, HGF, IL-8, and G-CSF, as the strongest predictors of critical illness. Neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, we define an essential role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular neutrophil markers that distinguish patients at risk of future clinical decompensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.