The number of publications on environmental footprint indicators has been growing rapidly, but with limited efforts to integrate different footprints into a coherent framework. Such integration is important for comprehensive understanding of environmental issues, policy formulation and assessment of trade-offs between different environmental concerns. Here, we systematize published footprint studies and define a family of footprints that can be used for the assessment of environmental sustainability. We identify overlaps between different footprints and analyse how they relate to the nine planetary boundaries and visualize the crucial information they provide for local and planetary sustainability. In addition, we assess how the footprint family delivers on measuring progress towards Sustainable Development Goals (SDGs), considering its ability to quantify environmental pressures along the supply chain and relating them to the water-energy-food-ecosystem (WEFE) nexus and ecosystem services. We argue that the footprint family is a flexible framework where particular members can be included or excluded according to the context or area of concern. Our paper is based upon a recent workshop bringing together global leading experts on existing environmental footprint indicators.
Purpose This paper explains in details the rationale behind the choice of the end-of-life allocation approach in the European Commission Product Environmental Footprint (PEF) and Organisational Environmental Footprint (OEF) methods. The end-of-life allocation formula in the PEF/OEF methods aims at enabling the assessment of all end-of-life scenarios possible, including recycling, reuse, incineration (with heat recovery) and disposal for both open-and closed-loop systems in a consistent and reproducible way. It presents how the formula builds on existing standards and how and why it deviates from them. Methods Various end-of-life allocation approaches and formulas, mainly taken not only from/based on existing environmental impact assessment methods and/or standards but also one original linearly degressive approach, were analysed against a predetermined set of criteria, reflecting the overall aim of the PEF/OEF methods. This
Purpose Assessing comprehensively the overall environmental impacts of a region remains a major challenge. Within life cycle assessment (LCA), this evaluation is performed calculating normalisation factors (NFs) at different scales. Normalisation represents an optional step of LCA according to ISO 14040/44 which may help in understanding the relative magnitude of the impact associated to a product when compared to a reference value. In order to enhance the robustness and comprehensiveness of NFs, this paper presents a methodology for building an extended domestic inventory of emission and resources extraction. The domestic inventory refers to emissions and extractions due to the processes located within a geographical region, Europe (EU 27), in 2010. A robust regional inventory is a fundamental element for supporting the calculation of global factors, often resulting form extrapolation and upscaling from regional ones. Methods The NFs for EU 27 in 2010 are based on extensive data collection and the application of extrapolation strategies for data gaps filling. The inventory is based on domestic emissions into air, water and soil and on resource extracted in EU, adopting a production-based approach. A hierarchy is developed for selection of data sources based on their robustness and quality. Data gap filling is based on several proxy indicators, specific for each impact category, capitalising existing statistics on pressure indicators (e.g. estimating ionising radiation emissions based on data of electricity production from nuclear power plants). To calculate NFs, the inventory is characterised using the International reference Life Cycle Data System (ILCD) Handbook (EC-JRC 2011a) midpoint indicators. Results and discussion The resulting NFs present several added values compared to earlier normalisation exercises based on domestic inventories, namely more complete inventory, based on wide variety of sources; more comprehensive coverage of the flows within each impact category; overall evaluation of the robustness of the final figures; and robustness evaluation of the data sources. Contribution analysis shows that few flows (NO x , SO x , NH 4 , etc.) are driving the impacts of several impact categories, and the choice of the data sources is particularly crucial, as this may lead to differences in the NFs. A qualitative uncertainty assessment is reported for each impact category. Besides, in order to test the robustness of the NFs, a sensitivity analysis on key choices and assumptions has been advocated. Conclusion and outlook NFs may help identification of the relative magnitude of the impact. Nonetheless, several limitations still exist both at the inventory and at the impact assessment level, e.g., several inventory flows are not characterised as there is no characterisation factor available in current models. Those limitations should be clearly reported and understood by the users of normalisation factors in order to correctly interpret the results of their study as well as when regional NFs are used a...
Life cycle impact assessment (LCIA) in classical life cycle assessment (LCA) aims at analyzing potential impacts of products and services typically on three so-called areas of protection (AoPs): Natural Environment, Human Health, and Natural Resources. This paper proposes an elaboration of the AoP Natural Resources. It starts with analyzing different perspectives on Natural Resources as they are somehow sandwiched in between the Natural Environment (their cradle) and the human-industrial environment (their application). Reflecting different viewpoints, five perspectives are developed with the suggestion to select three in function of classical LCA. They result in three safeguard subjects: the Asset of Natural Resources, their Provisioning Capacity, and their role in Global Functions. Whereas the Provisioning Capacity is fully in function of humans, the global functions go beyond provisioning as they include nonprovisioning functions for humans and regulating and maintenance services for the globe as a whole, following the ecosystem services framework. A fourth and fifth safeguard subject has been identified: recognizing the role Natural Resources for human welfare, either specifically as building block in supply chains of products and services as such, either with or without their functions beyond provisioning. But as these are far broader as they in principle should include characterization of mechanisms within the human industrial society, they are considered as subjects for an integrated sustainability assessment (LCSA: life cycle sustainability assessment), that is, incorporating social, economic and environmental issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.