The substantial reliance of South Asia (SA) to rain-based agriculture makes the region susceptible to food scarcity due to droughts. Previously, most research on SA has emphasized the meteorological aspects with little consideration of agrarian drought impressions. The insufficient amount of in situ precipitation data across SA has also hindered thorough investigation in the agriculture sector. In recent times, models, satellite remote sensing, and reanalysis products have increased the amount of data. Hence, soil moisture, precipitation, terrestrial water storage (TWS), and vegetation condition index (VCI) products have been employed to illustrate SA droughts from 1982 to 2019 using a standardized index/anomaly approach. Besides, the relationships of these products towards crop production are evaluated using the annual national production of barley, maize, rice, and wheat by computing the yield anomaly index (YAI). Our findings indicate that MERRA-2, CPC, FLDAS (soil moisture), GPCC, and CHIRPS (precipitation) are alike and constant over the entire four regions of South Asia (northwest, southwest, northeast, and southeast). On the other hand, GLDAS and ERA5 remain poor when compared to other soil moisture products and identified drought conditions in regions one (northwest) and three (northeast). Likewise, TWS products such as MERRA-2 TWS and GRACE TWS (2002–2014) followed the patterns of ERA5 and GLDAS and presented divergent and inconsistent drought patterns. Furthermore, the vegetation condition index (VCI) remained less responsive in regions three (northeast) and four (southeast) only. Based on annual crop production data, MERRA-2, CPC, FLDAS, GPCC, and CHIRPS performed fairly well and indicated stronger and more significant associations (0.80 to 0.96) when compared to others. Thus, the current outcomes are imperative for gauging the deficient amount of data in the SA region, as they provide substitutes for agricultural drought monitoring.
This paper synthesizes research studies on spatial forest assessment and mapping using remote sensing data and techniques in Pakistan. The synthesis states that 73 peer-reviewed research articles were published in the past 28 years (1993–2021). Out of all studies, three were conducted in Azad Jammu & Kashmir, one in Balochistan, three in Gilgit-Baltistan, twelve in Islamabad Capital Territory, thirty-one in Khyber Pakhtunkhwa, six in Punjab, ten in Sindh, and the remaining seven studies were conducted on national/regional scales. This review discusses the remote sensing classification methods, algorithms, published papers' citations, limitations, and challenges of forest mapping in Pakistan. The literature review suggested that the supervised image classification method and maximum likelihood classifier were among the most frequently used image classification and classification algorithms. The review also compared studies before and after the 18th constitutional amendment in Pakistan. Very few studies were conducted before this constitutional amendment, while a steep increase was observed afterward. The image classification accuracies of published papers were also assessed on local, regional, and national scales. The spatial forest assessment and mapping in Pakistan were evaluated only once using active remote sensing data (i.e., SAR). Advanced satellite imageries, the latest tools, and techniques need to be incorporated for forest mapping in Pakistan to facilitate forest stakeholders in managing the forests and undertaking national projects like UN’s REDD+ effectively.
Abstract. Atmospheric carbon dioxide (CO2) is the most significant greenhouse gas, and its concentration is continuously increasing, mainly as a consequence of anthropogenic activities. Accurate quantification of CO2 is critical for addressing the global challenge of climate change and for designing mitigation strategies aimed at stabilizing CO2 emissions. Satellites provide the most effective way to monitor the concentration of CO2 in the atmosphere. In this study, we utilized the concentration of the column-averaged dry-air mole fraction of CO2, i.e., XCO2 retrieved from a CO2 monitoring satellite, the Orbiting Carbon Observatory-2 (OCO-2), and the net primary productivity (NPP) provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the anthropogenic CO2 emissions using the Generalized Regression Neural Network (GRNN) over East and West Asia. OCO-2 XCO2, MODIS NPP, and the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) CO2 emission datasets for a period of 5 years (2015–2019) were used in this study. The annual XCO2 anomalies were calculated from the OCO-2 retrievals for each year to remove the larger background CO2 concentrations and seasonal variability. The XCO2 anomaly, NPP, and ODIAC emission datasets from 2015 to 2018 were then used to train the GRNN model, and, finally, the anthropogenic CO2 emissions were estimated for 2019 based on the NPP and XCO2 anomalies derived for the same year. The estimated and the ODIAC CO2 emissions were compared, and the results showed good agreement in terms of spatial distribution. The CO2 emissions were estimated separately over East and West Asia. In addition, correlations between the ODIAC emissions and XCO2 anomalies were also determined separately for East and West Asia, and East Asia exhibited relatively better results. The results showed that satellite-based XCO2 retrievals can be used to estimate the regional-scale anthropogenic CO2 emissions, and the accuracy of the results can be enhanced by further improvement of the GRNN model with the addition of more CO2 emission and concentration datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.