The common bean is a tropical facultative short-day legume that is now grown in tropical and temperate zones. This observation underscores how domestication and modern breeding can change the adaptive phenology of a species. A key adaptive trait is the optimal timing of the transition from the vegetative to the reproductive stage. This trait is responsive to genetically controlled signal transduction pathways and local climatic cues. A comprehensive characterization of this trait can be started by assessing the quantitative contribution of the genetic and environmental factors, and their interactions. This study aimed to locate significant QTL (G) and environmental (E) factors controlling time-to-flower in the common bean, and to identify and measure G × E interactions. Phenotypic data were collected from a biparental [Andean × Mesoamerican] recombinant inbred population (F11:14, 188 genotypes) grown at five environmentally distinct sites. QTL analysis using a dense linkage map revealed 12 QTL, five of which showed significant interactions with the environment. Dissection of G × E interactions using a linear mixed-effect model revealed that temperature, solar radiation, and photoperiod play major roles in controlling common bean flowering time directly, and indirectly by modifying the effect of certain QTL. The model predicts flowering time across five sites with an adjusted r-square of 0.89 and root-mean square error of 2.52 d. The model provides the means to disentangle the environmental dependencies of complex traits, and presents an opportunity to identify in silico QTL allele combinations that could yield desired phenotypes under different climatic conditions.
Development of a QTL-environment-based predictive model for node addition rate in common beanThe International Center for Tropical Agriculture (CIAT) believes that open access contributes to its mission of reducing hunger and poverty, and improving human nutrition in the tropics through research aimed at increasing the eco-efficiency of agriculture.CIAT is committed to creating and sharing knowledge and information openly and globally. We do this through collaborative research as well as through the open sharing of our data, tools, and publications. Citation:Zhang, Li; Gezan, Salvador A.; Vallejos, C. Eduardo; Jones, James W.; Boote, Kenneth J.; ClavijoMichelangeli, Jose A.; Bhakta, Mehul; Osorno, Juan M.; Rao, Idupulapati; Beebe, Stephen; Roman-Paoli, Elvin; Gonzalez, Abiezer; Beaver, James; Ricaurte, Jaumer; Colbert, Raphael; Correll, Melanie J.. 2017. Development of a QTL-environment-based predictive model for node addition rate in common bean. For more information, please contact CIAT Library at CIAT-Library@cgiar.org.Dear Author,Here are the proofs of your article.• You can submit your corrections online, via e-mail or by fax.• For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.• You can also insert your corrections in the proof PDF and email the annotated PDF.• For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.• Remember to note the journal title, article number, and your name when sending your response via e-mail or fax.• Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.• Check the questions that may have arisen during copy editing and insert your answers/ corrections.• Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.• The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.• Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal's style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.• If we do not receive your corrections within 48 hours, we will send you a reminder.• Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.• The printed version will follow in a forthcomin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.