The mechanism responsible for hydrogen-peroxide- or sodium-hypochlorite-induced reductions in dentin bond strength is unknown. This in vitro study tested the hypothesis that these oxidizing agents were responsible by attempting to reverse the effect with sodium ascorbate, a reducing agent. Human dentin was treated with these oxidants before or after being acid-etched and with or without post-treatment with sodium ascorbate. They were bonded with either Single Bond or Excite. Hydrogen peroxide reduced the bond strengths of both adhesives, while sodium hypochlorite produced reduction in adhesion of only Single Bond (p < 0.05). Following treatment with sodium ascorbate, reductions in bond strength were reversed. Transmission and scanning electron microscopy showed partial removal of the demineralized collagen matrix only by sodium hypochlorite. The observed compromised bond strengths cannot be attributed to incomplete deproteinization and may be related to changes in the redox potential of the bonding substrates.
Oxygen inhibits polymerization of resin-based materials. We hypothesized that compromised bonding to bleached enamel can be reversed with sodium ascorbate, an anti-oxidant. Sandblasted human enamel specimens were treated with distilled water (control) and 10% carbamide peroxide gel with or without further treatment with 10% sodium ascorbate. They were bonded with Single Bond (3M-ESPE) or Prime&Bond NT (Dentsply DeTrey) and restored with a composite. Specimens were prepared for microtensile bond testing and transmission electron microscopy after immersion in ammoniacal silver nitrate for nanoleakage evaluation. Bond strengths of both adhesives were reduced after bleaching but were reversed following sodium ascorbate treatment (P < 0.001). Resin-enamel interfaces in bleached enamel exhibited more extensive nanoleakage in the form of isolated silver grains and bubble-like silver deposits. Reduction of resin-enamel bond strength in bleached etched enamel is likely to be caused by a delayed release of oxygen that affects the polymerization of resin components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.