The clinical outcome of BC patients receiving the same treatment is known to vary considerably and thus, there is a compelling need to identify novel biomarkers that can select the patients that would benefit most from a given therapy and can predict the clinical outcome. The aim of this study was to determine the prognostic value of CCAT2, a novel long ncRNA recently characterized by our group and overlapping SNP rs6983267, in BC patients. We first evaluated by RT-qPCR and ISH the expression of CCAT2 in normal breast tissue and BC tissue and further analyzed CCAT2 expression in an independent set of 997 primary BC with regard to clinical, histological, pathological and other biological factors. Also, we explored the possibility of CCAT2 adding to the prognostic value of multivariate models that already included the traditional prognostic factors. Finally, we identified in in vitro models the impact of CCAT2 expression and SNP rs6983267 genotype on cell migration and chemoresistance. Our results revealed that although overexpressed in BCs in two out of three sets of patients, and having the highest expression in lymph node negative (LNN) disease, CCAT2 expression levels are informative solely for a subgroup of BC patients, namely for patients with LNP disease that have received adjuvant CMF chemotherapy. For this subgroup high levels of CCAT2 suggest the patients will not benefit from CMF containing adjuvant chemotherapy (shorter MFS and OS). Additionally, we found that CCAT2 upregulates cell migration and downregulates chemosensitivity to 5'FU in a rs6983267-independent manner.
Lung cancer is the leading cause of cancer deaths worldwide. Therefore, for the prevention, diagnosis, prognosis and treatment of lung cancer, efficient preventive strategies and new therapeutic strategies are needed to face these challenges. Natural bioactive compounds and particular flavonoids compounds have been proven to have an important role in lung cancer prevention and of particular interest is the dose used for these studies, to underline the molecular effects and mechanisms at a physiological concentration. The purpose of this review was to summarize the current state of knowledge regarding relevant molecular mechanisms involved in the pharmacological effects, with a special focus on the anti-cancer role, by regulating the coding and non-coding genes. Furthermore, this review focused on the most commonly altered and most clinically relevant oncogenes and tumor suppressor genes and microRNAs in lung cancer. Particular attention was given to the biological effect in tandem with conventional therapy, emphasizing the role in the regulation of drug resistance related mechanisms.
EMT represents the dominant program within advanced stages of colon cancer, where cells acquire migratory characteristics in order to invade secondary tissues and form metastasis. Where the majority of the therapeutic strategies are concentrated on the reduction of the tumor mass through different apoptotic mechanisms, the present study advocates an important role for miR-205-5p in impairment of colon cancer cells migration and restoration of the epithelial phenotype. Upon identification of a homogenous downregulated profile for miR-205-5p in colon adenocarcinoma patients, functional studies demonstrated that experimental upregulation of this sequence is able to significantly raise the levels of E-cadherin through direct inhibition of ZEB1. Moreover, the elevation in CDH1 expression was translated into functional parameters where cells lost their invasion and migratory characteristics and formed homogenous clusters through adhesion interactions. Survival analysis of colon adenocarcinoma patients revealed that low levels of miR-205-5p are associated with an unfavorable prognostic compared to those with increased expression, demonstrating the possible clinical utility of miR-205-5p replacement. Exogenous administration of miRNA mimics was not associated with significant changes in cell viability or inflammatory pathways. Therefore, the proposed strategy is aiming towards inhibition of metastasis and limitation of the tumor borders in advanced stages patients in order to prolong the survival time and to increase the efficiency of the current therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.