Plants are indispensable for life on earth and represent organisms of extreme biological diversity with unique molecular capabilities 1. Here, we present a quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana. It provides initial answers to how many genes exist as proteins (>18,000), where they are expressed, in which approximate quantities (>6 orders of magnitude dynamic range) and to what extent they are phosphorylated (>43,000 sites). We present examples for how the data may be used, for instance, to discover proteins translated from short open reading frames, to uncover sequence motifs involved in protein expression regulation, to identify tissue-specific protein complexes or phosphorylation-mediated signaling events to name a few. Interactive access to this unique resource for the plant community is provided via ProteomicsDB and ATHENA which include powerful bioinformatics tools to explore and characterize Arabidopsis proteins, their modifications and interplay. Main The plant model organism Arabidopsis thaliana (AT) has revolutionized our understanding of plant biology and influenced many other areas of the life sciences 1. Knowledge derived from Arabidopsis has also provided mechanistic understanding of important agronomic traits in crop species 2. The Arabidopsis genome was sequenced 20 years ago and hundreds of natural variants have since been analyzed at the genome and epigenome level 3,4. In contrast, the Arabidopsis proteome as the main executer of most biological processes is far less comprehensively characterized. To address this gap, we used state-of-the-art mass spectrometry and RNA sequencing (RNA-seq) to provide the first integrated proteomic, phosphoproteomic and transcriptomic atlas of Arabidopsis. Illustrated by selected examples, we show how this rich molecular resource can be used to explore the function of single proteins or entire pathways across multiple omics levels. Multi-omics atlas of Arabidopsis We generated an expression atlas covering, on average, 17,603 ± 1,317 transcripts, 14,430 ± 911 proteins and 14,689 ± 2,509 phosphorylation sites (p-sites) per tissue, using a reproducible biochemical and analytical approach (Fig. 1a,b; Extended Data Fig. 1a-c; Supplementary Data 1,2). In total, the protein expression data covers 18,210 of the 27,655 protein-coding genes (66%) annotated in Araport11 5. This is a substantial increase compared to the percentage of genes with protein level evidence reported in UniProt (27%) 6 and more than double the number of proteins identified in an earlier tissue proteome analysis 7 (Fig. 1c, Extended Data Fig. 1d-f). In addition, we report tissue-resolved quantitative evidence for a total of 43,903 p-sites making this study the most comprehensive single Arabidopsis phosphoproteome published to date (Fig. 1c). 47% of the expressed proteome was found to be phosphorylated in at least one instance, confirming earlier analyses of individual
Background Plants can transmit somatic mutations and epimutations to offspring, which in turn can affect fitness. Knowledge of the rate at which these variations arise is necessary to understand how plant development contributes to local adaption in an ecoevolutionary context, particularly in long-lived perennials. Results Here, we generate a new high-quality reference genome from the oldest branch of a wild Populus trichocarpa tree with two dominant stems which have been evolving independently for 330 years. By sampling multiple, age-estimated branches of this tree, we use a multi-omics approach to quantify age-related somatic changes at the genetic, epigenetic, and transcriptional level. We show that the per-year somatic mutation and epimutation rates are lower than in annuals and that transcriptional variation is mainly independent of age divergence and cytosine methylation. Furthermore, a detailed analysis of the somatic epimutation spectrum indicates that transgenerationally heritable epimutations originate mainly from DNA methylation maintenance errors during mitotic rather than during meiotic cell divisions. Conclusion Taken together, our study provides unprecedented insights into the origin of nucleotide and functional variation in a long-lived perennial plant.
In many plant species, a subset of transcribed genes are characterized by strictly CG-context DNA methylation, referred to as gene body methylation (gbM). The mechanisms that establish gbM are unclear, yet flowering plant species naturally without gbM lack the DNA methyltransferase, CMT3, which maintains CHG (H = A, C, or T) and not CG methylation at constitutive heterochromatin. Here, we identify the mechanistic basis for gbM establishment by expressing CMT3 in a species naturally lacking CMT3. CMT3 expression reconstituted gbM through a progression of de novo CHG methylation on expressed genes, followed by the accumulation of CG methylation that could be inherited even following loss of the CMT3 transgene. Thus, gbM likely originates from the simultaneous targeting of loci by pathways that promote euchromatin and heterochromatin, which primes genes for the formation of stably inherited epimutations in the form of CG DNA methylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.