Renewable biodiesel with a high content of n-C17 alkanes was prepared through the catalytic hydrodeoxygenation of oleic acid under optimum conditions of temperature, reaction time and weight percentage of Ni deposited in γ-Al2O3. The hydrotreated vegetable oil (HVO) was blended with petrodiesel (20 % and 40 % of HVO) to evaluate its behaviour in a diesel engine. Comparative studies of power and emission of atmospheric pollutants such as NOx, CO, HC and smoke were evaluated under prepared blends and petrodiesel. The presence of HVO biodiesel at full load generated a slight decrease in power compared to petrodiesel; however, the decrease in emission of pollutants when using the blends containing HVO was significant. In the case of 40 % HVO were able to reduce more of 20 % of CO and HC emissions, and more than 40 % reduction in smoke when compared with petrodiesel. The NOx emissions of the blends with HVO had a significant slightly decrease. Further, the properties of Ni/γ-Al2O3 catalysts are justified by the results of EDS characterization, surface area (SBET), XRD, XPS, HR-TEM and it’s capacity to produce biodiesel.
Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo intemperizados en suelos y sedimentos (Biodegradation modeling of sludge bioreactors of total petroleum hydrocarbons weathering in soil and sediments)
Plant microbial fuel cells (P-MFCs) are sustainable and eco-friendly technologies, which use plant root exudates to directly nourish the electrochemically active bacteria (EABs) to generate sustainable electricity. However, their use in evaluating plant growth has been insufficiently studied. In this study, interconnection between plant growth and the production of bioelectricity was evaluated by using P-MFCs inoculated with 642.865 mL ≅ 643 mL of livestock’s urine such as cow urine, goat urine, and sheep urine. The greatest mean stem diameter of 0.52 ± 0.01 cm was found in P-MFC-3 inoculated with goat urine, while the P-MFC-2 treated with cow urine reached a higher average number of roots with a value of 86 ± 2.50 (95% improvement) (p < 0.05). Besides, P-MFC-4 presented greater height of 50.08 ± 0.67 cm. For polarization curve experiment a higher maximum power density of 132 ± 11.6 mW m−2 (931 mA m−2) was reached with cow urine; in turn, with regard to the long-term operation, the same reactor indicated a higher maximum average power density of 43.68 ± 3.05 mW m−2. The study’s findings indicated that Stevia P-MFC inoculated with urine was a good option to increase the biomass amount for the agricultural plants along with power generation. Further, this study opens the way for more investigation of evaluating the impact of P-MFC on plant growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.