Ontologically distinct populations of macrophages differentially contribute to organ fibrosis through unknown mechanisms.We applied lineage tracing, single-cell RNA sequencing and single-molecule fluorescence in situ hybridisation to a spatially restricted model of asbestos-induced pulmonary fibrosis.We demonstrate that tissue-resident alveolar macrophages, tissue-resident peribronchial and perivascular interstitial macrophages, and monocyte-derived alveolar macrophages are present in the fibrotic niche. Deletion of monocyte-derived alveolar macrophages but not tissue-resident alveolar macrophages ameliorated asbestos-induced lung fibrosis. Monocyte-derived alveolar macrophages were specifically localised to fibrotic regions in the proximity of fibroblasts where they expressed molecules known to drive fibroblast proliferation, including platelet-derived growth factor subunit A. Using single-cell RNA sequencing and spatial transcriptomics in both humans and mice, we identified macrophage colony-stimulating factor receptor (M-CSFR) signalling as one of the novel druggable targets controlling self-maintenance and persistence of these pathogenic monocyte-derived alveolar macrophages. Pharmacological blockade of M-CSFR signalling led to the disappearance of monocyte-derived alveolar macrophages and ameliorated fibrosis.Our findings suggest that inhibition of M-CSFR signalling during fibrosis disrupts an essential fibrotic niche that includes monocyte-derived alveolar macrophages and fibroblasts during asbestos-induced fibrosis.
Regulatory T (Treg) cells orchestrate resolution and repair of acute lung inflammation and injury following viral pneumonia. Compared with younger patients, older individuals experience impaired recovery and worse clinical outcomes after severe viral infections, including influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whether age is a key determinant of Treg cell pro-repair function following lung injury remains unknown. Here, we show that aging results in a cell-autonomous impairment of reparative Treg cell function following experimental influenza pneumonia. Transcriptional and DNA methylation profiling of sorted Treg cells provide insight into the mechanisms underlying their age-related dysfunction, with Treg cells from aged mice demonstrating both loss of reparative programs and gain of maladaptive programs. Novel strategies that restore youthful Treg cell functional programs could be leveraged as therapies to improve outcomes among older individuals with severe viral pneumonia.
Alveolar epithelial cell (AEC) apoptosis, arising from mitochondrial dysfunction and mitophagy defects, is important in mediating idiopathic pulmonary fibrosis (IPF). Our group established a role for the mitochondrial (mt) DNA base excision repair enzyme, 8-oxoguanine-DNA glycosylase 1 (mtOGG1), in preventing oxidant-induced AEC mtDNA damage and apoptosis and showed that OGG1-deficient mice have increased lung fibrosis. Herein, we determined whether mice overexpressing the mtOGG1 transgene ( mtOgg1tg) are protected against lung fibrosis and whether AEC mtOGG1 preservation of mtDNA integrity mitigates phosphatase and tensin homolog-induced putative kinase 1 (PINK1) deficiency and apoptosis. Compared with wild type (WT), mtOgg1tg mice have diminished asbestos- and bleomycin-induced pulmonary fibrosis that was accompanied by reduced lung and AEC mtDNA damage and apoptosis. Asbestos and H2O2 promote the MLE-12 cell PINK1 deficiency, as assessed by reductions in the expression of PINK1 mRNA and mitochondrial protein expression. Compared with WT, Pink1-knockout ( Pink1-KO) mice are more susceptible to asbestos-induced lung fibrosis and have increased lung and alveolar type II (AT2) cell mtDNA damage and apoptosis. AT2 cells from Pink1-KO mice and PINK1-silenced (siRNA) MLE-12 cells have increased mtDNA damage that is augmented by oxidative stress. Interestingly, mtOGG1 overexpression attenuates oxidant-induced MLE-12 cell mtDNA damage and apoptosis despite PINK1 silencing. mtDNA damage is increased in the lungs of patients with IPF as compared with controls. Collectively, these findings suggest that mtOGG1 maintenance of AEC mtDNA is crucial for preventing PINK1 deficiency that promotes apoptosis and lung fibrosis. Given the key role of AEC apoptosis in pulmonary fibrosis, strategies aimed at preserving AT2 cell mtDNA integrity may be an innovative target.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Although in the ionizing radiation field many concepts and processes are currently recognized as radiobiological, there are also probabilistic ones, and a probabilistic treatment makes a better understanding about them. The purpose of this study is to develop a new radiobiological simulator that calculates the tumor control probability (TCP) for a tumor heterogeneously irradiated from a fractioned treatment. The three possible types of cells and the results of interactions of ionizing radiation with each cell of a determined volume are analyzed. For an irradiated region with a dose per fraction d, the simulator determines the radiation biological effects using the cell kill ( K) and cell sub-lethal damage, volume, cell density, cell repair of damaged cells during the interfractions, and number of fractions. K is determined from its probabilistic complement, the cell survival ( S), described with the linear-quadratic (LQ) S(d) model as K = 1 − LQ S( d). TCP is calculated from computational simulations as in the ratio of simulations with K = 100% and their total. This application opens new avenues for theoretical and experimental investigations concerning simulations of radiation treatments, and methodologies for therapy optimizations. Our simulator represents a novel methodology as TCP is calculated without analytical formulas, but based on its own probabilistic definition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.