Cancer immunoediting, the process whereby the immune system controls tumour outgrowth and shapes tumour immunogenicity, is comprised of three phases: elimination, equilibrium and escape1–5. Although many immune components that participate in this process are known, its underlying mechanisms remain poorly defined. A central tenet of cancer immunoediting is that T cell recognition of tumour antigens drives the immunologic destruction or sculpting of a developing cancer. However, our current understanding of tumour antigens comes largely from analyses of cancers that develop in immunocompetent hosts and thus may have already been edited. Little is known about the antigens expressed in nascent tumour cells, whether they are sufficient to induce protective anti-tumour immune responses or whether their expression is modulated by the immune system. Here, using massively parallel sequencing, we characterize expressed mutations in highly immunogenic methylcholanthrene-induced sarcomas derived from immunodeficient Rag2−/− mice which phenotypically resemble nascent primary tumour cells1,3,5. Employing class I prediction algorithms, we identify mutant spectrin-β2 as a potential rejection antigen of the d42m1 sarcoma and validate this prediction by conventional antigen expression cloning and detection. We also demonstrate that cancer immunoediting of d42m1 occurs via a T cell-dependent immunoselection process that promotes outgrowth of pre-existing tumour cell clones lacking highly antigenic mutant spectrin-β2 and other potential strong antigens. These results demonstrate that the strong immunogenicity of an unedited tumour can be ascribed to expression of highly antigenic mutant proteins and show that outgrowth of tumour cells that lack these strong antigens via a T cell-dependent immunoselection process represents one mechanism of cancer immunoediting.
Head and neck cancers, including those of the lip and oral cavity, nasal cavity, paranasal sinuses, oropharynx, larynx and nasopharynx represent nearly 700,000 new cases and 380,000 deaths worldwide per annum, and account for over 10,000 annual deaths in the United States alone. Improvement in outcomes are needed for patients with recurrent and or metastatic squamous cell carcinoma of the head and neck (HNSCC). In 2016, the US Food and Drug Administration (FDA) granted the first immunotherapeutic approvals – the anti-PD-1 immune checkpoint inhibitors nivolumab and pembrolizumab – for the treatment of patients with recurrent squamous cell carcinoma of the head and neck (HNSCC) that is refractory to platinum-based regimens. The European Commission followed in 2017 with approval of nivolumab for treatment of the same patient population, and shortly thereafter with approval of pembrolizumab monotherapy for the treatment of recurrent or metastatic HNSCC in adults whose tumors express PD-L1 with a ≥ 50% tumor proportion score and have progressed on or after platinum-containing chemotherapy. Then in 2019, the FDA granted approval for PD-1 inhibition as first-line treatment for patients with metastatic or unresectable, recurrent HNSCC, approving pembrolizumab in combination with platinum and fluorouracil for all patients with HNSCC and pembrolizumab as a single agent for patients with HNSCC whose tumors express a PD-L1 combined positive score ≥ 1. These approvals marked the first new therapies for these patients since 2006, as well as the first immunotherapeutic approvals in this disease. In light of the introduction of these novel therapies for the treatment of patients with head and neck cancer, The Society for Immunotherapy of Cancer (SITC) formed an expert committee tasked with generating consensus recommendations for emerging immunotherapies, including appropriate patient selection, therapy sequence, response monitoring, adverse event management, and biomarker testing. These consensus guidelines serve as a foundation to assist clinicians’ understanding of the role of immunotherapies in this disease setting, and to standardize utilization across the field for patient benefit. Due to country-specific variances in approvals, availability and regulations regarding the discussed agents, this panel focused solely on FDA-approved drugs for the treatment of patients in the U.S. Electronic supplementary material The online version of this article (10.1186/s40425-019-0662-5) contains supplementary material, which is available to authorized users.
'Cancer immunoediting' is a process wherein the immune system protects hosts against tumor development and facilitates outgrowth of tumors with reduced immunogenicity. Although interferon-gamma (IFN-gamma) is known to be involved in this process, the involvement of type I interferons (IFN-alpha/beta) has not been elucidated. We now show that, like IFN-gamma, endogenously produced IFN-alpha/beta was required for the prevention of the growth of primary carcinogen-induced and transplantable tumors. Although tumor cells are important IFN-gamma targets, they are not functionally relevant sites of the actions of the type I interferons. Instead, host hematopoietic cells are critical IFN-alpha/beta targets during development of protective antitumor responses. Therefore, type I interferons are important components of the cancer immunoediting process and function in a way that does not completely overlap the functions of IFN-gamma.
IMPORTANCE Novel approaches are needed to improve outcomes in patients with squamous cell carcinoma of the oral cavity. Neoadjuvant immunotherapy given prior to surgery and combining programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) immune checkpoint inhibitors are 2 strategies to enhance antitumor immune responses that could be of benefit. DESIGN, SETTING, AND PARTICIPANTSIn this randomized phase 2 clinical trial conducted at 1 academic center, 29 patients with untreated squamous cell carcinoma of the oral cavity (ՆT2, or clinically node positive) were enrolled between 2016 to 2019.INTERVENTIONS Treatment was administered with nivolumab, 3 mg/kg, weeks 1 and 3, or nivolumab and ipilimumab (ipilimumab, 1 mg/kg, given week 1 only). Patients had surgery 3 to 7 days following cycle 2.MAIN OUTCOMES AND MEASURES Safety and volumetric response determined using bidirectional measurements. Secondary end points included pathologic and objective response, progression-free survival (PFS), and overall survival. Multiplex immunofluorescence was used to evaluate primary tumor immune markers.RESULTS Fourteen patients were randomized to nivolumab (N) and 15 patients to nivolumab/ipilimumab (N+I) (mean [SD] age, 62 [12] years; 18 men [62%] and 11 women [38%]). The most common subsite was oral tongue (n = 16). Baseline clinical staging included patients with T2 (n = 20) or greater (n = 9) T stage and 17 patients (59%) with node-positive disease. Median time from cycle 1 to surgery was 19 days (range, 7-21 days); there were no surgical delays. There were toxic effects at least possibly related to study treatment in 21 patients, including grade 3 to 4 events in 2 (N), and 5 (N+I) patients. One patient died of conditions thought unrelated to study treatment (postoperative flap failure, stroke). There was evidence of response in both the N and N+I arms (volumetric response 50%, 53%; pathologic downstaging 53%, 69%; RECIST response 13%, 38%; and pathologic response 54%, 73%, respectively). Four patients had major/complete pathologic response greater than 90% (N, n = 1; N+I, n = 3). With 14.2 months median follow-up, 1-year progression-free survival was 85% and overall survival was 89%.CONCLUSIONS AND RELEVANCE Treatment with N and N+I was feasible prior to surgical resection. We observed promising rates of response in both arms, supporting further neoadjuvant studies with these agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.