Abstract-Stress-dependent regulation of cardiac action potential duration is mediated by the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. It is accompanied by an increased magnitude of the slow outward potassium ion current, I Ks . KCNQ1 and KCNE1 subunits coassemble to form the I Ks channel. Mutations in either subunit cause long QT syndrome, an inherited cardiac arrhythmia associated with an increased risk of sudden cardiac death.Here we demonstrate that exocytosis of KCNQ1 proteins to the plasma membrane requires the small GTPase RAB11, whereas endocytosis is dependent on RAB5. We further demonstrate that RAB-dependent KCNQ1/KCNE1 exocytosis is enhanced by the serum-and glucocorticoid-inducible kinase 1, and requires phosphorylation and activation of phosphoinositide 3-phosphate 5-kinase and the generation of PI(3,5)P 2 . Identification of KCNQ1/KCNE1 recycling and its modulation by serum-and glucocorticoid-inducible kinase 1-phosphoinositide 3-phosphate 5-kinase -PI(3,5)P 2 provides a mechanistic insight into stress-induced acceleration of cardiac repolarization. (Circ Res. 2007;100:686-692.)Key Words: kinase Ⅲ PIP2 Ⅲ RAB Ⅲ trafficking Ⅲ PIKfyve E motional stress activates the sympathetic nervous system 1 and the release of stress hormones such as cortisol via the hypothalamic-pituitary-adrenal (HPA) axis 2 and is a common trigger of sudden cardiac death. 3,4 One of the many genes regulated by cortisol is the serum-and glucocorticoidinducible kinase 1 (SGK1). 5,6 In vitro experiments have shown that SGK1 stimulates I Ks 7 , a repolarizing potassium current conducted by channels composed of KCNQ1 ␣-subunits and KCNE1 -subunits. 8,9 Moreover, a gain-offunction variant of SGK1 is associated with shortening of the QT interval. 10 SGK1-mediated regulation of I Ks might be particularly important in patients with KCNQ1 (Kv7.1, Kv-LQT1) or KCNE1 (minK) mutations that are prone to fatal cardiac arrhythmias triggered by physical and psychological stress. 4 The mechanism responsible for regulation of I Ks channels by SGK1 have remained elusive. SGK1 enhances the abundance of other types of channel protein in the plasma membrane by inhibiting the ubiquitin ligase Nedd4 -2 11 in addition to other mechanisms (summarized by Lang et al 2006 12 ).Other candidate signaling molecules that may affect channel trafficking include RAB family proteins, GTPases involved in vesicle cycling. [13][14][15][16][17][18] RAB5, a monomeric GTPase of the Ras superfamily, has been implicated in the regulation of early steps in the endocytic pathway, whereas the RAB11 GTPase is localized at the trans-Golgi network, post-Golgi vesicles and the recycling endosome. 19 Both RAB5 and RAB11 are expressed in cardiac tissue. 17 Mammalian cells and Xenopus laevis oocytes have been shown to possess and use highly conserved RAB-dependent trafficking pathways. 20,21 Endocytosis by RAB5 and exocytosis by RAB11 have been reported to participate in the regulation of CFTR chloride channels 22 and the glucose transporter GluT4. 15...
Abstract-Physical and emotional stress is accompanied by release of stress hormones such as the glucocorticoid cortisol. This hormone upregulates the serum-and glucocorticoid-inducible kinase (SGK)1, which in turn stimulates I Ks , a slow delayed rectifier potassium current that mediates cardiac action potential repolarization. Mutations in I Ks channel ␣ (KCNQ1, KvLQT1, Kv7.1) or  (KCNE1, IsK, minK) subunits cause long QT syndrome (LQTS), an inherited cardiac arrhythmia associated with increased risk of sudden death. Together with the GTPases RAB5 and RAB11, SGK1 facilitates membrane recycling of KCNQ1 channels. Here, we show altered SGK1-dependent regulation of LQTS-associated mutant I Ks channels. Whereas some mutant KCNQ1 channels had reduced basal activity but were still activated by SGK1, currents mediated by KCNQ1(Y111C) or KCNQ1(L114P) were paradoxically reduced by SGK1. Heteromeric channels coassembled of wild-type KCNQ1 and the LQTS-associated KCNE1(D76N) mutant were similarly downregulated by SGK1 because of a disrupted RAB11-dependent recycling. Mutagenesis experiments indicate that stimulation of I Ks channels by SGK1 depends on residues H73, N75, D76, and P77 in KCNE1. Identification of the I Ks recycling pathway and its modulation by stress-stimulated SGK1 provides novel mechanistic insight into potentially fatal cardiac arrhythmias triggered by physical or psychological stress.
Voltage-gated K+ channel activation is proposed to result from simultaneous bending of all S6 segments away from the central axis, enlarging the aperture of the pore sufficiently to permit diffusion of K+ into the water-filled central cavity. The hinge position for the bending motion of each S6 segment is proposed to be a Gly residue and/or a Pro-Val-Pro motif in Kv1-Kv4 channels. The KCNQ1 (Kv7.1) channel has Ala-336 in the Gly-hinge position and Pro-Ala-Gly. Here we show that mutation of Ala-336 to Gly in KCNQ1 increased current amplitude and shifted the voltage dependence of activation to more negative potentials, consistent with facilitation of hinge activity that favors the open state. In contrast, mutation of Ala-336 to Cys or Thr shifted the voltage dependence of activation to more positive potentials and reduced current amplitude. Mutation of the putative Gly hinge to Ala in KCNQ2 (Kv7.2) abolished channel function. Mutation-dependent changes in current amplitude, but not kinetics, were found in heteromeric KCNQ1/KCNE1 channels. Mutation of the Pro or Gly of the Pro-Ala-Gly motif to Ala abolished KCNQ1 function and introduction of Gly in front of the Ala-mutations partially recovered channel function, suggesting that flexibility at the PAG is important for channel activation.
The KCNQ gene family comprises voltage-gated potassium channels expressed in epithelial tissues (KCNQ1, KCNQ5), inner ear structures (KCNQ1, KCNQ4) and the brain (KCNQ2-5). KCNQ4 is expressed in inner and outer hair cells of the inner ear where it influences electrical excitability and cell survival. Accordingly, loss of function mutations of the KCNQ4 gene cause hearing loss in humans and functional k.o.-mice show progressive degeneration of outer hair cells (OHCs). However, characteristic electrophysiological features of the native KCNQ4- carried current IK,n in OHCs are not recapitulated by expression of KCNQ4 channels in heterologous expression systems. This might suggest modulation of KCNQ4 by interacting KCNE ß-subunits, which are known to modify the properties of the closely related KCNQ1. The present study explored whether transcripts of the KCNE isoforms could be identified in OHC mRNA and whether the subunits modulate KCNQ4 function. RT-PCR indeed yielded transcripts of all five KCNEs in OHCs. Coexpression of the KCNE- ß-subunits with human KCNQ4 in the Xenopus laevis oocyte expression system revealed that all KCNEs modulate KCNQ4 voltage dependence, protein stability and ion selectivity of hKCNQ4 in Xenopus oocytes. The deafness-associated Jervell and Lange- Nielsen syndrome (JLNS) mutation KCNE1(D76N) impairs KCNQ4-function whereas the Romano-Ward syndrome (RWS) mutant KCNE1(S74L), which shows normal hearing in patients, does not impair KCNQ4 channel function. In conclusion, KCNEs are presumably coexpressed with KCNQ4 in hair cells from the organ of Corti and might regulate KCNQ4 functional properties, effects that could be important under physiological and pathophysiological conditions.
Previous studies revealed a linkage of the kainate receptor GluR6 with autism, a pervasive developmental disorder. Mutational screening in autistic patients disclosed the amino acid exchange M836I in a highly conserved domain of the cytoplasmic C-terminal region of GluR6. Here, we show that this mutation leads to GluR6 gain-of-function. By using the two-electrode voltage clamp technique we observed a significant increase of current amplitudes of mutant GluR6 compared to wild type GluR6. Western blotting of oocytes injected with mutant or wild type GluR6 cRNA and transfection of EGFP-tagged GluR6 receptors into COS-7 cells revealed an enhanced plasma membrane expression of GluR6(M836I) compared to wild type GluR6. Membrane expression of GluR6(M836I) but not of wild type GluR6 seems to be regulated by Rab11 as indicated by our finding that GluR6(M836I) but not wild type GluR6 showed increased current amplitudes and protein expression when coexpressed with Rab11. Furthermore, injection of GTP plus Rab11A protein into oocytes increased current amplitudes in GluR6(M836I) but not in wild type GluR6. By contrast, Rab5 downregulated the currents in oocytes expressing wild type GluR6 but had only little, statistically not significant effects on currents in oocytes expressing GluR6(M836I). Our data on altered functional properties of GluR6(M836I) provide a functional basis for the postulated linkage of GluR6 to autism. Furthermore, we identified new mechanisms determining the plasma membrane abundance of wild type GluR6 and GluR6(M836I).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.