There is a medical need for an agent with the positive effects of estrogen on bone and the cardiovascular system, but without the negative effects on reproductive tissue. Raloxifene (LY139481 HCI) is a benzothiophene derivative that binds to the estrogen receptor and inhibits the effects of estrogen on the uterus. In an ovariectomized (OVX) rat model we investigated the effects of raloxifene on bone loss (induced by estrogen deficiency), serum lipids, and uterine tissue. After oral administration of raloxifene for 5 wk (0.1-10 mg/kg per d) to OVX rats, bone mineral density in the distal femur and proximal tibia was significantly greater than that observed in OVX controls (ED50 of 0.03-0.3 mg/kg). Serum cholesterol was lower in the raloxifene-treated animals, which had a minimal effective dose of 0.1 mg/kg and an approximate oral ED50 of 0.2 mg/kg. The effects of raloxifene on bone and serum cholesterol were comparable to those of a 0.1-mg/kg per d oral dose of ethynyl estradiol. Raloxifene diverged dramatically from estrogen in its lack of significant estrogenic effects on uterine tissue. Ethynyl estradiol produced a marked elevation in a number of uterine histologic parameters (e.g., epithelial cell height, stromal eosinophilia). These data suggest that raloxifene has promise as an agent with beneficial bone and cardiovascular effects in the absence of significant uterine effects. (J. Clin. Invest. 1994. 93:63-69.)
Liver X receptors (LXR) belong to the nuclear receptor superfamily that can regulate important lipid metabolic pathways. The plasma phospholipid transfer protein (PLTP) is known to mediate transfer of phospholipids from triglyceride-rich lipoproteins to high density lipoprotein (HDL) and plays a critical role in HDL metabolism. We report here that a specific LXR agonist, T0901317, elevated HDL cholesterol and phospholipid in C57/BL6 mice and generated enlarged HDL particles that were enriched in cholesterol, ApoAI, ApoE, and phospholipid. The appearance of these HDL particles upon oral dosing of T0901317 in C57/BL6 mice was closely correlated with the increased plasma PLTP activity and liver PLTP mRNA levels. Nuclear run-on assay indicated that the effect of LXR agonist on PLTP expression was at the transcriptional level. In mouse peritoneal macrophage cells, PLTP expression was also up-regulated by the LXR/RXR (retinoid X receptor) heterodimer. However, cholesterol efflux in mouse peritoneal macrophage cells from PLTP-deficient mice (PLTP0) was not significantly different from wild type animals. Although in PLTP-deficient mice, the induction of HDL cholesterol as well as HDL particle size increase persisted, the extent of the induction was greatly attenuated. We conclude that PLTP is a direct target gene of LXRs in vivo and plays an important role in LXR agonistmediated HDL cholesterol and size increase in mice.Epidemiological studies have revealed that plasma HDL 1 cholesterol is inversely correlated to coronary artery disease in humans. Several hypotheses have been proposed to explain the benefits of HDL. Among these, reverse cholesterol transport concept has been widely accepted. This notion, proposed more than 30 years ago by Glomset (1), is defined as the process through which nascent HDL particles remove excessive free cholesterol from peripheral tissues and carry it back to the liver for catabolism. The studies on cellular cholesterol efflux pathway were highlighted by the recent breakthrough defining the genetic defects associated with Tangier disease and hypoalphalipoproteinemia (2-5). The mutations of ATP-binding cassette transport protein 1 (ABCA1) were identified as the underlining cause of the rare genetic disorder that leads to almost total absence of plasma ApoAI and HDL cholesterol and to massive accumulation of cholesterol esters in macrophage cells.Plasma phospholipid transfer protein (PLTP) activity is also closely related to HDL levels. PLTP transfers phospholipids from triglyceride-rich lipoproteins to HDL during lipolysis. Moreover, it also participates the phospholipid exchanges between HDL particles (21). Disruption of PLTP in mice dramatically reduces plasma HDL cholesterol and phospholipid levels (6). Although its role in the circulation has been studied extensively, its potential function in the reverse cholesterol transport pathway and HDL biogenesis awaits further elucidation.Liver X receptors (LXRs) belong to the orphan nuclear receptor superfamily and exist in two isoforms, LXR␣ a...
Our findings indicate that raloxifene hydrochloride has a potentially important antiatherogenic effect, analogous to that observed with estrogen in this model.
A new series of hPPARalpha agonists containing a 2,4-dihydro-3H-1,2,4-triazol-3-one (triazolone) core is described leading to the discovery of 5 (LY518674), a highly potent and selective PPARalpha agonist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.