Purpose
This study was designed to evaluate the relationship between the minimal margin size and local tumor progression (LTP) following CT-guided radiofrequency ablation (RFA) of colorectal cancer liver metastases (CLM).
Methods
An institutional review board-approved, HIP-PA-compliant review identified 73 patients with 94 previously untreated CLM that underwent RFA between March 2003 and May 2010, resulting in an ablation zone completely covering the tumor 4–8 weeks after RFA dynamic CT. Comparing the pre- with the post-RFA CT, the minimal margin size was categorized to 0, 1–5, 6–10, and 11–15 mm. Follow-up included CT every 2–4 months. Kaplan–Meier methodology and Cox regression analysis were used to evaluate the effect of the minimal margin size, tumor location, size, and proximity to a vessel on LTP.
Results
Forty-five of 94 (47.9 %) CLM progressed locally. Median LTP-free survival (LPFS) was 16 months. Two-year LPFS rates for ablated CLM with minimal margin of 0, 1–5 mm, 6–10 mm, 11–15 mm were 26, 46, 74, and 80 % (p < 0.011). Minimal margin (p = 0.002) and tumor size (p = 0.028) were independent risk factors for LTP. The risk for LTP decreased by 46 % for each 5-mm increase in minimal margin size, whereas each additional 5-mm increase in tumor size increased the risk of LTP by 22 %.
Conclusions
An ablation zone with a minimal margin uniformly larger than 5 mm 4–8 weeks postablation CT is associated with the best local tumor control.
Small biopsy and cytology achieve comparable rates of definitive and accurate NSCLC subtyping, and the optimal results are attained when the two modalities are considered jointly. The lower requirement for IHC in cytology highlights the strength of cytomorphology in NSCLC subtyping. Whenever clinically feasible, obtaining parallel biopsy and cytology specimens is encouraged.
OBJECTIVE
Irreversible electroporation is a nonthermal ablative tool that uses direct electrical pulses to create irreversible membrane pores and cell death. The ablation zone is surrounded by a zone of reversibly increased permeability; either zone can cause cardiac arrhythmias. Our purpose was to establish a safety profile for the use of irreversible electroporation close to the heart.
MATERIALS and METHODS
The effect of unsynchronized and synchronized (with the R wave on ECG) irreversible electroporation in swine lung and myocardium was studied in 11 pigs. Twelve lead ECG recordings were analyzed by an electrophysiologist for the presence of arrhythmia. Ventricular arrhythmias were categorized as major events. Minor events included all other dysrhythmias or ECG changes. Cardiac and lung tissue was submitted for histopathologic analysis. Electrical field modeling was performed to predict the distance from the applicators over which cells show electroporation-induced increased permeability.
RESULTS
At less than or equal to 1.7 cm from the heart, fatal (major) events occurred with all unsynchronized irreversible electroporation. No major and three minor events were seen with synchronized irreversible electroporation. At more than 1.7 cm from the heart, two minor events occurred with only unsynchronized irreversible electroporation. Electrical field modeling correlates well with the clinical results, revealing increased cell membrane permeability up to 1.7 cm away from the applicators. Complete lung ablation without intervening live cells was seen. No myocardial injury was seen.
CONCLUSION
Unsynchronized irreversible electroporation close to the heart can cause fatal ventricular arrhythmias. Synchronizing irreversible electroporation pulse delivery with absolute refractory period avoids significant cardiac arrhythmias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.