Several diagnostic methods for the evaluation and monitoring were used to find out the pro-inflammatory status, as well as incidence of sepsis in critically ill patients. One such recent method is based on investigating the genetic polymorphisms and determining the molecular and genetic links between them, as well as other sepsis-associated pathophysiologies. Identification of genetic polymorphisms in critical patients with sepsis can become a revolutionary method for evaluating and monitoring these patients. Similarly, the complications, as well as the high costs associated with the management of patients with sepsis, can be significantly reduced by early initiation of intensive care.
Critical polytrauma patients present a series of pathophysiological disturbances, biochemical and molecular dysfunction, which comprise to be the major cause of intensive care unit admission. In regard to molecular damage, there exists a series of factors, which all together contribute to the aggravation of the clinical status leading to increased mortality rate in these patients. One of the most important biochemical factors involved is the nuclear transcription factor B (NF-κB). Impaired NF-κB functioning is reflected on the clinical status of the patient through increased production of pro-inflammatory molecule, leading to multiple organ dysfunction syndrome. In addition to this, through microRNAs interactions, various pathophysiological as well as biochemical disturbances are produced, which altogether further reduce the patient's survival rate. In this paper, we would like to present the modifications seen in the expression of NF-κB in critically polytraumatized patients with sepsis. In additions to this, we would like to discuss the correlation between the microRNAs and its further implications in clinical status of these patients.
A critically ill polytrauma patient is one of the most complex cases to be admitted to the intensive care unit, due to both the primary traumatic complications and the secondary post-traumatic interactions. From a molecular, genetic, and epigenetic point of view, numerous biochemical interactions are responsible for the deterioration of the clinical status of a patient, and increased mortality rates. From a molecular viewpoint, microRNAs are one of the most complex macromolecular systems due to the numerous modular reactions and interactions that they are involved in. Regarding the expression and activity of microRNAs in sepsis, their usefulness has reached new levels of significance. MicroRNAs can be used both as an early biomarker for sepsis, and as a therapeutic target because of their ability to block the complex reactions involved in the initiation, maintenance, and augmentation of the clinical status.
A high percentage of critical patients are found to develop acute respiratory distress syndrome (ARDS). Several studies have reported high mortality rates in these cases which are most frequently associated with multiple organ dysfunctions syndrome. Lately, many efforts have been made to evaluate and monitor ARDS in critical patients. In this regard, the assessment of genetic polymorphisms responsible for developing ARDS present as a challenge and are considered future biomarkers. Early detection of the specific polymorphic gene responsible for ARDS in critically ill patients can prove to be a useful tool in the future, able to help decrease the mortality rates in these cases. Moreover, identifying the genetic polymorphism in these patients can help in the implementation of a personalized intensive therapy scheme for every type of patient, based on its genotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.