The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.
An effective Zika virus (ZIKV) vaccine will require long-term durable protection. Several ZIKV vaccine candidates have demonstrated protective efficacy in nonhuman primates, but such studies have typically involved ZIKV challenge shortly following vaccination at peak immunity. In this study, we show that a single immunization with an adenovirus vector-based vaccine, as well as two immunizations with a purified inactivated virus vaccine, afforded robust protection against ZIKV challenge in rhesus monkeys at 1 year following vaccination. In contrast, two immunizations with an optimized DNA vaccine, which provided complete protection at peak immunity, resulted in reduced protective efficacy at 1 year that was associated with declining neutralizing antibody titers to sub-protective levels. These data define a microneutralization log titer of 2.0-2.1 as the threshold required for durable protection against ZIKV challenge in this model. Moreover, our findings demonstrate that protection against ZIKV challenge in rhesus monkeys is possible for at least 1 year with a single-shot vaccine.
The causal association of Zika virus (ZIKV) with microcephaly, congenital malformations in infants, and Guillain-Barré syndrome in adults highlights the need for effective vaccines. Thus far, efforts to develop ZIKV vaccines have focused on the viral envelope. ZIKV NS1 as a vaccine immunogen has not been fully explored, although it can circumvent the risk of antibody-dependent enhancement of ZIKV infection, associated with envelope antibodies. Here, we describe a novel DNA vaccine encoding a secreted ZIKV NS1, that confers rapid protection from systemic ZIKV infection in immunocompetent mice. We identify novel NS1 T cell epitopes in vivo and show that functional NS1-specific T cell responses are critical for protection against ZIKV infection. We demonstrate that vaccine-induced anti-NS1 antibodies fail to confer protection in the absence of a functional T cell response. This highlights the importance of using NS1 as a target for T cell–based ZIKV vaccines.
Sustained virologic control of human immunodeficiency virus type 1 (HIV-1) infection after discontinuation of antiretroviral therapy (ART) is a major goal of the HIV-1 cure field. A recent study reported that administration of an antibody against α4β7 induced durable virologic control after ART discontinuation in 100% of rhesus macaques infected with an attenuated strain of simian immunodeficiency virus (SIV) containing a stop codon in nef. We performed similar studies in 50 rhesus macaques infected with wild-type, pathogenic SIVmac251. In animals that initiated ART during either acute or chronic infection, anti-α4β7 antibody infusion had no detectable effect on the viral reservoir or viral rebound after ART discontinuation. These data demonstrate that anti-α4β7 antibody administration did not provide therapeutic efficacy in the model of pathogenic SIVmac251 infection of rhesus macaques.
Strategies to treat Zika virus (ZIKV) infection in dengue virus (DENV) endemic areas are urgently needed. Here we show that a DENV-specific antibody against the E-dimer epitope (EDE) potently cross-neutralizes ZIKV and provides robust therapeutic efficacy as well as prophylactic efficacy against ZIKV in rhesus monkeys. Viral escape was not detected, suggesting a relatively high bar to escape. These data demonstrate the potential for antibody-based therapy and prevention of ZIKV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.