Purpose: Inhibition of steroid sulfatase (STS), the enzyme responsible for the hydrolysis of steroid sulfates, represents a potential novel treatment for postmenopausal women with hormone-dependent breast cancer. Estrone and DHEA are formed by this sulfatase pathway and can be converted to steroids (estradiol and androstenediol, respectively), which have potent estrogenic properties. Experimental Design: STX64 (667 Coumate), a tricylic coumarin-based sulfamate that irreversibly inhibits STS activity, was selected for entry into the first phase I trial of a STS inhibitor in postmenopausal women with breast cancer. STX64 was administered orally (nine patients at 5 mg and five patients at 20 mg) as an initial dose followed 1week later by 3 Â 2 weekly cycles, with each cycle comprising daily dosing for 5 days followed by 9 days off treatment. Blood and tumor tissue samples were collected for the assessment of STS activity and serum was obtained for steroid hormone measurements before and after treatment. Results: The median inhibition of STS activity by STX64 was 98% in peripheral blood lymphocytes (PBL) and 99% in breast tumor tissue at the end of the 5-day dosing period. As expected, serum concentrations of estrone, estradiol, androstenediol, and DHEA all decreased significantly from pretreatment levels. Unexpectedly, androstenedione and testosterone concentrations also decreased. Four patients, all of whom had previously progressed on aromatase inhibitors, showed evidence of stable disease for 2.75 to 7 months. The drug was well tolerated with only minor drug-related adverse events recorded. Conclusion: STX64 is a potent, well-tolerated STS inhibitor. It inhibits STS activity in PBLs and tumor tissues and causes significant decreases in serum concentrations of steroids with estrogenic properties.
Several lines of evidence suggest aberrant immune response in schizophrenia, including elevated levels of cytokines. These cytokines are thought to be produced by activated microglia, the innate immune cells of the central nervous system. However, increase in translocator protein 18 kDa (TSPO), a marker of activated glia, has not been found in patients with chronic schizophrenia using second-generation radiotracers and positron emission tomography (PET)-based neuroimaging. In this study we focused on patients with recent onset of schizophrenia (within 5 years of diagnosis). Quantified levels of TSPO in the cortical and subcortical brain regions using the PET-based radiotracer [11C]DPA-713 were compared between the patients and healthy controls. Markers of inflammation, including interleukin 6 (IL-6), were assessed in the plasma and cerebrospinal fluid (CSF) in these participants. We observed no significant change in the binding of [11C]DPA-713 to TSPO in 12 patients with recent onset of schizophrenia compared with 14 controls. Nevertheless, the patients with recent onset of schizophrenia showed a significant increase in IL-6 in both plasma (P<0.001) and CSF (P=0.02). The CSF levels of IL-6 were significantly correlated with the levels of IL-6 in plasma within the total study population (P<0.001) and in patients with recent onset of schizophrenia alone (P=0.03). Our results suggest that increased levels of IL-6 may occur in the absence of changed TSPO PET signal in the brains of medicated patients with recent onset of schizophrenia. Future development of PET-based radiotracers targeting alternative markers of glial activation and immune response may be needed to capture the inflammatory signature present in the brains of patients with early-stage disease.
Background Imitation, which is impaired in children with Autism Spectrum Disorder (ASD) and critically depends on the integration of visual input with motor output, likely impacts both motor and social skill acquisition in children with ASD; however it is unclear what brain mechanisms contribute to this impairment. Children with ASD also exhibit what appears to be an ASD-specific bias against using visual feedback during motor learning. Does the temporal congruity of intrinsic activity, or functional connectivity, between motor and visual brain regions contribute to ASD-associated deficits in imitation, motor and social skills? Methods We acquired resting state functional Magnetic Resonance Imaging scans from 100, 8-12 year-old children (50 ASD). Group independent component analysis was used to estimate functional connectivity between visual and motor systems. Brain-behavior relationships were assessed by regressing functional connectivity measures with social deficit severity, imitation and gesture performance scores. Results We observed increased intrinsic asynchrony between visual and motor systems in children with ASD and replicated this finding in an independent sample from the Autism Brain Imaging Data Exchange. Moreover, children with more out-of-sync intrinsic visual-motor activity displayed more severe autistic traits while children with greater intrinsic visual-motor synchrony were better imitators. Conclusions Our twice replicated findings confirm that visual-motor functional connectivity is disrupted in ASD. Furthermore, the observed temporal incongruity between visual and motor systems, which may reflect diminished integration of visual consequences with motor output, was predictive of the severity of social deficits and may contribute to impaired social-communicative skill development in children with ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.