During both regulatory and routine surveillance sampling of baitfish from the states of Illinois, Minnesota, Montana, and Wisconsin, USA, isolates (n = 20) of a previously unknown picornavirus were obtained from kidney/spleen or entire viscera of fathead minnows (Pimephales promelas) and brassy minnows (Hybognathus hankinsoni). Following the appearance of a diffuse cytopathic effect, examination of cell culture supernatant by negative contrast electron microscopy revealed the presence of small, round virus particles (∼30–32 nm), with picornavirus-like morphology. Amplification and sequence analysis of viral RNA identified the agent as a novel member of the Picornaviridae family, tentatively named fathead minnow picornavirus (FHMPV). The full FHMPV genome consisted of 7834 nucleotides. Phylogenetic analysis based on 491 amino acid residues of the 3D gene showed 98.6% to 100% identity among the 20 isolates of FHMPV compared in this study while only 49.5% identity with its nearest neighbor, the bluegill picornavirus (BGPV) isolated from bluegill (Lepomis macrochirus). Based on complete polyprotein analysis, the FHMPV shared 58% (P1), 33% (P2) and 43% (P3) amino acid identities with BGPV and shared less than 40% amino acid identity with all other picornaviruses. Hence, we propose the creation of a new genus (Piscevirus) within the Picornaviridae family. The impact of FHMPV on the health of fish populations is unknown at present.
During regulatory sampling of fathead minnows (Pimephales promelas), a novel calicivirus was isolated from homogenates of kidney and spleen inoculated into bluegill fry (BF-2) cells. Infected cell cultures exhibiting cytopathic effects were screened by PCR-based methods for selected fish viral pathogens. Illumina HiSeq next generation sequencing of the total RNA revealed a novel calicivirus genome that showed limited protein sequence similarity to known homologs in a BLASTp search. The complete genome of this fathead minnow calicivirus (FHMCV) is 6564 nt long, encoding a polyprotein of 2114 aa in length. The complete polyprotein shared only 21% identity with Atlantic salmon calicivirus,followed by 11% to 14% identity with mammalian caliciviruses. A molecular detection assay (RT-PCR) was designed from this sequence for screening of field samples for FHMCV in the future. This virus likely represents a prototype species of a novel genus in the family Caliciviridae, tentatively named "Minovirus".
In 2018, Vagococcus salmoninarum was isolated from two lots of broodstock "coaster" brook trout (Salvelinus fontinalis) containing ~1,500 fish at the Iron River National Fish Hatchery, at which time it was identified as the causative agent of a chronic coldwater streptococcosis epizootic. Clinical signs included exophthalmia, lethargy, erratic swimming and loss of equilibrium. Female fish experienced disproportionately higher morbidity and mortality than male co-inhabitants, and routinely retained eggs following spawning. The most consistent gross clinical sign was heart pallor and turbid pericardial effusion. An attempted treatment using florfenicol was ineffective at halting the epizootic, which spanned more than a year and resulted in >50% mortality before remaining fish were culled. As there is no previous documentation of V. salmoninarum at this hatchery or in this species, it is still unclear what circumstances led to this epizootic. The inability to treat this chronic disease led to the loss of valuable broodstock, hampering ongoing fishery conservation efforts in the Great Lakes Basin. K E Y W O R D Sbrook trout, coldwater streptococcosis, Salvelinus fontinalis, Vagococcus salmoninarum
Vagococcus salmoninarum was identified as the causative agent of a chronic epizootic in broodstock “coaster” brook trout (Salvelinus fontinalis) at the Iron River National Fish Hatchery. The epizootic spanned more than a year, was unresponsive to multiple florfenicol treatments, and resulted in >50% mortality of the affected fish. The decision was made to cull the remaining fish during spawning, which presented an opportunity to more thoroughly examine V. salmoninarum sampling methods, organ tropism and vertical transmission. A newly developed qPCR targeting the pheS gene was used in concert with bacterial culture to show that V. salmoninarum indeed disproportionately affects females and has a tropism for female reproductive tissues. The study demonstrates that some female reproductive tissues (e.g. ovarian fluid, unfertilized eggs) are also an effective option for non‐lethal detection. Despite the widespread presence of V. salmoninarum in ovarian fluid and on egg surfaces, we found no evidence of intra‐ova transmission.
During a routine health inspection of apparently healthy wildcaught common mudpuppies Necturus maculosus, the bacteriaYersinia ruckeri was isolated and the identity confirmed using biochemical and molecular methods. This represents the first isolation of Y. ruckeri from an amphibian. This finding increases the known host range capable of harboring this important fish pathogen and could have serious management implications for aquaculture. Furthermore, addressing wild amphibians in fish hatchery biosecurity plans is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.