The aim of this paper is to provide an efficient frequency-domain method for bifurcation analysis of nonlinear dynamical systems. The proposed method consists in directly tracking the bifurcation points when a system parameter such as the excitation or nonlinearity level is varied. To this end, a so-called extended system comprising the equation of motion and an additional equation characterizing the bifurcation of interest is solved by means of the Harmonic Balance Method coupled with an arc-length continuation technique. In particular, an original extended system for the detection and tracking of Neimark-Sacker (secondary Hopf) bifurcations is introduced. By applying the methodology to a nonlinear energy sink and to a rotor-stator rubbing system, it is shown that the bifurcation tracking can be used to efficiently compute the boundaries of stability and/or dynamical regimes, i.e., safe operating zones.
International audienceLarge-amplitude non-linear vibrations of micro- and nano-electromechanical resonant sensors around their primary resonance are investigated. A comprehensive multiphysics model based on the Galerkin decomposition method coupled with the averaging method is developed in the case of electrostatically actuated clamped-clamped resonators. The model is purely analytical and includes the main sources of non-linearities as well as fringing field effects. The influence of the higher modes and the validation of the model is demonstrated with respect to the shooting method as well as the harmonic balance coupled with the asymptotic numerical method. This model allows designers to investigate the sensitivity variation of resonant sensors in the non-linear regime with respect to the electrostatic forcing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.