From genomic association studies, quantitative trait loci analysis, and epigenomic mapping, it is evident that significant efforts are necessary to define genetic-epigenetic interactions and understand their role in disease susceptibility and progression. For this reason, an analysis of the effects of genetic variation on gene expression and DNA methylation in human placentas at high resolution and whole-genome coverage will have multiple mechanistic and practical implications. By producing and analyzing DNA sequence variation (n = 303), DNA methylation (n = 303) and mRNA expression data (n = 80) from placentas from healthy women, we investigate the regulatory landscape of the human placenta and offer analytical approaches to integrate different types of genomic data and address some potential limitations of current platforms. We distinguish two profiles of interaction between expression and DNA methylation, revealing linear or bimodal effects, reflecting differences in genomic context, transcription factor recruitment, and possibly cell subpopulations. These findings help to clarify the interactions of genetic, epigenetic, and transcriptional regulatory mechanisms in normal human placentas. They also provide strong evidence for genotype-driven modifications of transcription and DNA methylation in normal placentas. In addition to these mechanistic implications, the data and analytical methods presented here will improve the interpretability of genome-wide and epigenome-wide association studies for human traits and diseases that involve placental functions.
Background: From genomic association studies, quantitative trait loci analysis, and epigenomic mapping, it is evident that significant efforts are necessary to define geneticepigenetic interactions and understand their role in disease susceptibility and progression. For this reason, an analysis of the effects of genetic variation on gene expression and DNA methylation in human placentas at high resolution and wholegenome coverage will have multiple mechanistic and practical implications.Results: By producing and analyzing DNA sequence variation (n=303), DNA methylation (n=303) and mRNA expression data (n=80) from placentas from healthy women, we investigate the regulatory landscape of the human placenta and offer analytical approaches to integrate different types of genomic data and address some potential limitations of current platforms. We distinguish two profiles of interaction between expression and DNA methylation, revealing linear or bimodal effects, reflecting differences in genomic context, transcription factor recruitment, and possibly cell subpopulations.Conclusions: These findings help to clarify the interactions of genetic, epigenetic, and transcriptional regulatory mechanisms in normal human placentas. They also provide strong evidence for genotype-driven modifications of transcription and DNA methylation in normal placentas. In addition to these mechanistic implications, the data and analytical methods presented here will improve the interpretability of genome-wide and epigenome-wide association studies for human traits and diseases that involve placental functions. Author summaryThe placenta is a critical organ playing multiple roles including oxygen and metabolite transfer from mother to fetus, hormone production, and vascular perfusion. With this study, we aimed to deliver a placenta-specific regulatory map based on a combination of publicly available and newly generated data. To complete this reference, we obtained genotype information (n=303), DNA methylation (n=303) and expression data (n=80) for placentas from healthy women. Our analysis of methylation and expression quantitative trait loci (QTLs) and correlations between methylation and expression data were designed to identify fundamental associations between genome, transcriptome, and epigenome in this key fetal organ. The results provide high-resolution genetic and epigenetic maps specific to the placenta based on a representative ethnically diverse cohort. As interest and efforts are growing to better understand the etiology of placental disease and the impact of the environment on placental function these data will provide a reference and enhance future investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.