Proliferative activity, assessed by Ki67 immunohistochemistry (IHC), is an established prognostic and predictive biomarker of breast cancer (BC). However, it remains under-utilized due to lack of standardized robust measurement methodologies and significant intratumor heterogeneity of expression. A recently proposed methodology for IHC biomarker assessment in whole slide images (WSI), based on systematic subsampling of tissue information extracted by digital image analysis (DIA) into hexagonal tiling arrays, enables computation of a comprehensive set of Ki67 indicators, including intratumor variability. In this study, the tiling methodology was applied to assess Ki67 expression in WSI of 152 surgically removed Ki67-stained (on full-face sections) BC specimens and to test which, if any, Ki67 indicators can predict overall survival (OS). Visual Ki67 IHC estimates and conventional clinico-pathologic parameters were also included in the study. Analysis revealed linearly independent intrinsic factors of the Ki67 IHC variance: proliferation (level of expression), disordered texture (entropy), tumor size and Nottingham Prognostic Index, bimodality, and correlation. All visual and DIA-generated indicators of the level of Ki67 expression provided significant cutoff values as single predictors of OS. However, only bimodality indicators (Ashman's D, in particular) were independent predictors of OS in the context of hormone receptor and HER2 status. From this, we conclude that spatial heterogeneity of proliferative tumor activity, measured by DIA of Ki67 IHC expression and analyzed by the hexagonal tiling approach, can serve as an independent prognostic indicator of OS in BC patients that outperforms the prognostic power of the level of proliferative activity.
The extracellular matrix (ECM) collagen undergoes major remodeling during tumorigenesis. However, alterations to the ECM are not widely considered in cancer diagnostics, due to mostly uniform appearance of collagen fibers in white light images of hematoxylin and eosin-stained (H&E) tissue sections. Polarimetric second-harmonic generation (P-SHG) microscopy enables label-free visualization and ultrastructural investigation of non-centrosymmetric molecules, which, when combined with texture analysis, provides multiparameter characterization of tissue collagen. This paper demonstrates whole slide imaging of breast tissue microarrays using high-throughput widefield P-SHG microscopy. The resulting P-SHG parameters are used in classification to differentiate tumor from normal tissue, resulting in 94.2% for both accuracy and F1-score, and 6.3% false discovery rate. Subsequently, the trained classifier is employed to predict tumor tissue with 91.3% accuracy, 90.7% F1-score, and 13.8% false omission rate. As such, we show that widefield P-SHG microscopy reveals collagen ultrastructure over large tissue regions and can be utilized as a sensitive biomarker for cancer diagnostics and prognostics studies.
The extracellular matrix (ECM) collagen undergoes major remodeling during tumorigenesis. However, alterations to the ECM are not widely considered in cancer diagnostics, due to mostly uniform appearance of collagen fibers in white light images of hematoxylin and eosin-stained tissue sections. Polarimetric second-harmonic generation (P-SHG) microscopy enables label-free visualization and ultrastructural investigation of non-centrosymmetric molecules, which, when combined with texture analysis, provides multiparameter characterization of tissue collagen. This paper demonstrates whole slide imaging of breast tissue microarrays using high-throughput widefield P-SHG microscopy. The resulting P-SHG parameters are used in classification to differentiate tumor tissue from normal with 94.2% accuracy and F1-score, and 6.3% false discovery rate. Subsequently, the trained classifier is employed to predict tumor tissue with 91.3% accuracy, 90.7% F1-score, and 13.8% false omission rate. As such, we show that widefield P-SHG microscopy reveals collagen ultrastructure over large tissue regions and can be utilized as a sensitive biomarker for cancer diagnostics and prognostics studies.
BackgroundGene expression studies have identified molecular subtypes of breast cancer with implications to chemotherapy recommendations. For distinction of these types, a combination of immunohistochemistry (IHC) markers, including proliferative activity of tumor cells, estimated by Ki67 labeling index is used. Clinical studies are frequently based on IHC performed on tissue microarrays (TMA) with variable tissue sampling. This raises the need for evidence-based sampling criteria for individual IHC biomarker studies. We present a novel tissue sampling simulation model and demonstrate its application on Ki67 assessment in breast cancer tissue taking intratumoral heterogeneity into account.MethodsWhole slide images (WSI) of 297 breast cancer sections, immunohistochemically stained for Ki67, were subjected to digital image analysis (DIA). Percentage of tumor cells stained for Ki67 was computed for hexagonal tiles super-imposed on the WSI. From this, intratumoral Ki67 heterogeneity indicators (Haralick’s entropy values) were extracted and used to dichotomize the tumors into homogeneous and heterogeneous subsets. Simulations with random selection of hexagons, equivalent to 0.75 mm circular diameter TMA cores, were performed. The tissue sampling requirements were investigated in relation to tumor heterogeneity using linear regression and extended error analysis.ResultsThe sampling requirements were dependent on the heterogeneity of the biomarker expression. To achieve a coefficient error of 10 %, 5–6 cores were needed for homogeneous cases, 11–12 cores for heterogeneous cases; in mixed tumor population 8 TMA cores were required. Similarly, to achieve the same accuracy, approximately 4,000 nuclei must be counted when the intratumor heterogeneity is mixed/unknown. Tumors of low proliferative activity would require larger sampling (10–12 TMA cores, or 6,250 nuclei) to achieve the same error measurement results as for highly proliferative tumors.ConclusionsOur data show that optimal tissue sampling for IHC biomarker evaluation is dependent on the heterogeneity of the tissue under study and needs to be determined on a per use basis. We propose a method that can be applied to determine the sampling strategy for specific biomarkers, tissues and study targets. In addition, our findings highlight the benefit of high-capacity computer-based IHC measurement techniques to improve accuracy of the testing.Electronic supplementary materialThe online version of this article (doi:10.1186/s13000-016-0525-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.