An accurate description of muscular activity plays an important role in the clinical diagnosis and rehabilitation research. The electromyography (EMG) is the most used technique to make accurate descriptions of muscular activity. The EMG is associated with the electrical changes generated by the activity of the motor neurons. Typically, to decode the muscular activation during different movements, a large number of individual motor neurons are monitored simultaneously, producing large amounts of data to be transferred and processed by the computing devices. In this paper, we follow an alternative approach that can be deployed locally on the sensor side. We propose a neuromorphic implementation of a spiking neural network (SNN) to extract spatio-temporal information of EMG signals locally and classify hand gestures with very low power consumption. We present experimental results on the input data stream using a mixed-signal analog/digital neuromorphic processor. We performed a thorough investigation on the performance of the SNN implemented on the chip, by: first, calculating PCA on the activity of the silicon neurons at the input and the hidden layers to show how the network helps in separating the samples of different classes; second, performing classification of the data using state-of-theart SVM and logistic regression methods and a hardware-friendly spike-based read-out. The traditional algorithm achieved a classification rate of 84% and 81%, respectively, and the spiking learning method achieved 74%. The power consumption of the SNN is 0.05 mW, showing the potential of this approach for ultra-low power processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.